Project description:Infections caused by Fusobacterium species are rare; however serious infections with complications or mortality may occur occasionally. We conducted a retrospective study to investigate the clinical features of patients with Fusobacterium infections and the differences between infections caused by the species F. necrophorum, F. nucleatum, and F. varium. Additionally, we attempted to identify risk factors for Fusobacterium-associated mortality. This study included all patients at a large tertiary care teaching hospital in South Korea with Fusobacterium infections from January 2006 to April 2021. Demographic, clinical, laboratory, and outcome data were analyzed. Multiple logistic regression analysis was performed to assess the risk factors for in-hospital mortality associated with F. nucleatum and F. varium infections. We identified 272 patients with Fusobacterium infections during the study period. The number of Fusobacterium cases has increased recently, with F. varium infections markedly increasing since 2016 and causing a significant proportion of infections. Patients with F. varium infections were older and had a higher proportion of nosocomial infections than the other groups. The F. nucleatum and F. varium groups showed higher in-hospital mortality than the F. necrophorum group. Through logistic regression analysis, APACHE II score and serum albumin level were considered risk factors for in-hospital mortality. APACHE II score was positively correlated with age, red cell distribution width, and serum blood urea nitrogen, and negatively correlated with serum albumin level. Infections caused by Fusobacterium species are increasing. F. varium causes a significant proportion of severe infections.
Project description:Fusobacterium nucleatum is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by F. nucleatum to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of F. nucleatum. However, the exact manner in which F. nucleatum promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored. Here, we show that both live F. nucleatum and sterile F. nucleatum-conditioned medium promote CXCL8 release from the intestinal adenocarcinoma HT-29 cell line. We determined that the pro-inflammatory response was ALPK1-dependent in both HEK293 and HT-29 cells and that the released F. nucleatum molecule had characteristics that match those of the pro-inflammatory ALPK1 ligand ADP-heptose or related heptose phosphates. In addition, not only F. nucleatum but also other Fusobacterium species such as F. varium, F. necrophorum and F. gonidiaformans promoted an ALPK1-dependent pro-inflammatory environment, indicating that ADP-heptose or related heptose phosphates secretion is a conserved feature of the Fusobacterium genus. By performing transcriptional analysis of ADP-heptose stimulated HT-29 cells, we found several inflammatory and cancer-related pathways to be differentially regulated, including DNA mismatch repair genes and the immune inhibitory receptor PD-L1. Finally, we show that stimulation of HT-29 cells with F. nucleatum resulted in an ALPK1-dependent upregulation of PD-L1. These results aid in our understanding of the mechanisms by which F. nucleatum can affect tumor development and therapy and pave the way for future therapeutic approaches.
Project description:Localization of Fusobacterium nucleatum in the placenta may be associated with pregnancy complications including preeclampsia (PE), but its specific pathobiology is unknown. Our aim was to analyze the effect of Fusobacterium nucleatum on HUVEC cells to further elucidate placental dysfunction in the context of Fusobacterium nucleatum infestation.