Project description:Adaptation to alkalinization of the medium in fungi involves an extensive remodeling of gene expression. Komagataella phaffii is an ascomycetous yeast that has become an organism widely used for heterologous protein expression. We explore here the transcriptional impact of moderate alkalinization in this yeast. In spite of a minor effect on growth, shifting the cultures from pH 5.5 to 8.0 or 8.2 provokes significant changes in the mRNA levels of over 700 genes. Functional categories such as arginine and methionine biosynthesis, non-reductive iron uptake and phosphate metabolism are enriched in induced genes, whereas many genes encoding iron-sulfur proteins or members of the respirasome were repressed. We also show that alkalinization is accompanied by oxidative stress and we propose this circumstance as a common trigger of a subset of the observed changes. PHO89, encoding a Na+/Pi cotransporter, appears among the most potently induced genes by high pH. We demonstrate that this response is mainly based on two calcineurin-dependent response elements located in its promoter, thus indicating that alkalinization triggers a calcium-mediated signal in K. phaffii. Further characterization of alkaline pH responsive promoters may lead to developing novel pH-controlled systems for heterologous protein expression in this fungus.