Project description:Vibrio species represent one of the most diverse genera of marine bacteria known for their ubiquitous presence in natural aquatic systems. Several members of this genus including Vibrio harveyi are receiving increasing attention lately because they are becoming a source of health problems, especially for some marine organisms widely used in sea food industry. To learn about adaptation changes triggered by V. harveyi during its long-term persistence at elevated temperatures, we studied adaptation of this marine bacterium in sea water microcosms at 30 oC that closely mimicks the upper limits of sea surface temperatures recorded around the globe.
Project description:In recent years, due to the influence of climate change and rising sea temperature, the incidence of Vibrio alginolyticus infections is increasing, and becoming the second most common Vibrio species reported in human illness. Therefore, better understanding of the pathogenic mechanism of V. alginolyticus infection is urgently needed. Vvrr1 (Vibrio virulence regulatory RNA 1) is a new found ncRNA predicted to be closely related to the adhesion ability of V. alginolyticus through the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1 over-expressed strains and proteome sequencing technology.
Project description:In marine Vibrio species, chitin-induced natural transformation enables bacteria to take up DNA from the external environment and integrate it into their genome via homologous recombination. Expression of the master competence regulator TfoX bypasses the need for chitin induction and drives expression of the genes required for competence in several Vibrio species. Here, we show that TfoX expression in two Vibrio campbellii strains, DS40M4 and NBRC 15631, enables high frequencies of natural transformation. Conversely, transformation was not achieved in the model quorum-sensing strain V. campbellii BB120 (previously classified as Vibrio harveyi). Surprisingly, we find that quorum sensing is not required for transformation in V. campbellii DS40M4. This result is in contrast to Vibrio cholerae that requires the quorum-sensing regulator HapR to activate the competence regulator QstR. However, similar to V. cholerae, QstR is necessary for transformation in DS40M4. To investigate the difference in transformation frequencies between BB120 and DS40M4, we used previously studied V. cholerae competence genes to inform a comparative genomics analysis coupled with transcriptomics. BB120 encodes homologs of all known competence genes, but most of these genes were not induced by ectopic expression of TfoX, which likely accounts for the non-functional natural transformation in this strain. Comparison of transformation frequencies among Vibrio species indicates a wide disparity among even closely related strains, with Vibrio vulnificus having the lowest functional transformation frequency. We show that ectopic expression of both TfoX and QstR is sufficient to produce a significant increase in transformation frequency in Vibrio vulnificus.
Project description:Although many members of the genus Vibrio are known to inhabit the marine photic zone, an understanding of the influence of light on the molecular physiology of Vibrio spp. has largely been neglected. To begin to characterize the photophysiology of one such Vibrio sp. (Vibrio campbellii ATCC strain BAA-1116) we used microarray-based expression profiling to compare the transcriptomes of illuminated versus dark cell cultures. Specficially, we compared the transcriptomes of wild type V. campbellii (STR) cells that were cultured in M9 minimal salts medium plus glucose under two conditions: (i) after 24 hours of continuous dark and (ii) after a 12 hour dark:12 hour light cycle (white light illumination at 54 µmol photons s-1 m-2). The results revealed a large photostimulon (differential expression of ~20% of the V. campbellii genome; adjusted p value < 0.0001) that surprisingly included ~75% of the type III secretion system (T3SS) genes which were found to be 1.6 – 5.4X more abundant in illuminated cultures. These findings, which were confirmed by quantitative reverse transcription PCR and quantitative membrane proteomics, strongly suggest that the photostimulon of strain BAA-1116 includes the T3SS.
Project description:Objectives: determination of transcription start sites in Vibrio harveyi genome and discovery of new transcripts Methods: we performed differential seqencing of total RNA isolated from o.n. control Vibrio harveyi cultures. Sample treatment with Terminator EXonuclease (TEX) allowed differenciation of primary and secondary transcripts, helping in the definition of transcription start sites (TSS) Results: by data-mining RNA-seq data and performing some Northern Blot experiments we were able to detect new putative small-RNAs, along with these results, a more deep analisys of our RNA-seq data will give futher insight into genetic organization of Vibrio harveyi genome to help in its investigation