Project description:Here, we precisely determined MCM7 binding sites inHeLa cells by ChIP-Seq, classified them into firing and dormant replication origins using SNS data deposited, and analyzed their association with various chromatin signatures.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. As part of a project for profiling replication origins in Arabidopsis thaliana, we have performed ChIP-chip analysis of the binding of ORC1 and CDC6, two proteins involved in initiation of DNA replication. Here, we provide the data of the ORC1-bound and CDC6-bound genomic sites using as control genomic DNA.
Project description:Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Project description:Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Project description:The budding yeast genome is marked by 250-350 origins of DNA replication. These origins are bound by the origin recognition complex (ORC) throughout the cell cycle. ORC has known DNA binding sequence preferences which, though necessary for binding, are not sufficient to fully specify a genomic locus as being bound by ORC, indicating that the cell must use additional chromosomal cues to specify ORC binding sites and origins of replication. Using high-throughput sequencing to precisely locate both ORC binding sites and nucleosome locations genome-wide, we find that a nucleosome depleted region (NDR) and precisely positioned nucleosomes are a ubiquitous feature of yeast replication origins. The ARS consensus sequence (ACS) and adjacent sequences are sufficient to maintain the nucleosome-free properties of the NDR. We use a temperature sensitive ORC1 mutant to demonstrate that ORC is required to maintain precisely positioned nucleosomes at origins of replication. These findings demonstrate the importance of local nucleosome positioning at replication origins, and that chromatin organization is an important determinant of origin selection. Examination of nucleosome positioning in wild-type and orc1-161ts mutant S. cerevisiae at room temperature and heatshock temperatures. Examination of ORC binding locations by ChIP-seq. All reported coordinates are based on the SGD genome build released 12/16/2005.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5’ half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H3 and H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. Examination of BrdU labelled DNA and unlabelled DNA in one cell type
Project description:We report the genome-wide mapping of Orc1 binding-sites in mammals and their validation as active DNA-replication origins (ORIs). Orc1 sites are universally associated with transcription start sites (TSSs) of coding or non-coding RNAs. Transcription levels at the Orc1 sites directly correlate with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (M-bM-^IM-%1 RNA copy/cell), replicating in early S and mapping to the TSSs of coding RNAs, and those associated with low transcription levels (<1 RNA copy/cell), replicating throughout the entire S and mapping to TSSs of non-coding RNAs. These findings are compatible with a scenario whereby TSS expression-levels influence the efficiency of Orc1 recruitment at G1 and the probability of firing during S. Identification of Orc1 binding sites in human cells
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5M-bM-^@M-^Y half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. This SuperSeries is composed of the following subset Series: GSE21781: Mapping origins of replication in Arabidopsis thaliana: Examination of BrdU labelled DNA and unlabelled DNA in one cell type GSE21827: Mapping origins of replication in Arabidopsis thaliana: H3K4ac ChIP vs. unmodified H3 ChIP Refer to individual Series
Project description:The budding yeast genome is marked by 250-350 origins of DNA replication. These origins are bound by the origin recognition complex (ORC) throughout the cell cycle. ORC has known DNA binding sequence preferences which, though necessary for binding, are not sufficient to fully specify a genomic locus as being bound by ORC, indicating that the cell must use additional chromosomal cues to specify ORC binding sites and origins of replication. Using high-throughput sequencing to precisely locate both ORC binding sites and nucleosome locations genome-wide, we find that a nucleosome depleted region (NDR) and precisely positioned nucleosomes are a ubiquitous feature of yeast replication origins. The ARS consensus sequence (ACS) and adjacent sequences are sufficient to maintain the nucleosome-free properties of the NDR. We use a temperature sensitive ORC1 mutant to demonstrate that ORC is required to maintain precisely positioned nucleosomes at origins of replication. These findings demonstrate the importance of local nucleosome positioning at replication origins, and that chromatin organization is an important determinant of origin selection.