Project description:Liquid cultures of the unicellular green alga, Chlamydomonas reinhardtii were grown in media with 6 uM Mn (control) or 1000 uM Mn (experimental), and analyzed by RNA-Seq to identify genes that are differentially expressed in response to excess Mn.
Project description:RNA populations in Chlamydomonas reinhardtii Keywords: Highly parallel pyrosequencing Small RNAs were prepared from Chlamydomonas reinhardtii total extracts,ligated to a 3' adaptor and a 5' acceptor sequentially, and then RT-PCR amplified. PCR products were reamplified using a pair of 454 cloning primers and provided to 454 Life Sciences (Branford, CT) for sequencing. For technical details, see Tao Zhao, Guanglin Li, Shijun Mi, Shan Li, Gregory J. Hannon, Xiu-Jie Wang, and Yijun Qi. 2007. A Complex System of Small RNAs in the Unicellular Green Alga Chlamydomonas reinhardtii. Genes & Development
Project description:The goal of this analysis was to identify the ribosomal RNA content of the mitochondrial risome of Chlamydomonas reinhardtii green alga
Project description:Here, we report a transcriptomics analysis on a day in the life of Chlamydomonas reinhardtii. Cultures of this unicellular alga were grown in photobioreactors on a 12 h light / 12 h dark cycle. Samples were collected at regular intervals and subjected to a transcriptomics analysis by RNA-Seq.
Project description:Here, we report on the transcriptome of the organelles of the micro-alga, Chlamydomonas reinhardtii, sampled under a number of different conditions. The preparation of the RNA-Seq libraries and their analysis were performed using protocols optimized for organellar transcripts. Samples include growth in media +/– Fe, growth in media +/– Cu, diurnal growth samples collected in dark and light, and the sexual cycle.
Project description:Two strains of the green alga, Chlamydomonas reinhardtii, were selected for high expression of transgenes. These strains, called UVM4 and UVM11, were found to both have unique mutations in the SRTA gene (Cre10.g462200). In this study, the basal transcriptome of these two strains was compared to that of their WT parental strain, Elow47, to identify what effects, if any, the srta mutation has on the transcriptome. Additionally, two SRTA complemented strains in a UVM11 background (UVM11-C1 and UVM11-C9) were included for comparison.
Project description:We used Chlamydomonas microarray v2.0 to compare the time course expression profiles of two Chlamydomonas reinhardtii strains: wild-type WT and the high hydrogen producing mutant Stm6Glc4 during sulfur starvation induced hydrogen production. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H2 production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher hydrogen production in the mutant including higher light sensitivity and lower competitions with hydrogenase by alternative electron sinks. Under S-starvation induced H2 producing conditions the induction of LHCSR3, a chlorophyll binding protein involving in non photochemical quenching, was significantly lower in Stm6Glc4 resulting in significant higher photodamage to photosystem II. Consequently, Stm6Glc4 had a shorter aerobic phase, consumed less starch reserves, and produced H2 earlier at higher rates than WT. We also showed that the loss of mitochondrial DNA-binding protein MOC1 in both knockdown and knockout mutant resulted in higher light sensitivity and improved H2 yield. Furthermore, by comparing our data with previously published ‘omics’ data, we were able to identify genes that responded specifically to either sulfur starvation, anaerobiosis or hydrogen production as well as to provide a more complete picture of S-deprived H2 production in the green alga C. reinhardtii.
Project description:Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer.