ABSTRACT: Frequent consumption of deep-sea fishes and seasonal difference of diet composition of Wedge-tailed Shearwaters were indicated by DNA metabarcoding analysis
Project description:This SuperSeries is composed of the SubSeries listed below. Growth in fishes is a complex trait, controlled by both genetic and environmental factors, that impacts many components of fitness. Gene expression studies may lead to the identification of candidate genes for growth and microarrays offer the opportunity to examine the expression of thousands of genes simultaneously. Gene expression differences in the liver and white muscle were examined in normally growing, 15 month-old, large and small size-selected rainbow trout (Oncorhynchus mykiss) derived from two different seasonal spawning groups (Sept. and Dec.). Examination of the gene expression differences in both liver and white muscle tissue allowed us to assess the seasonal influences upon gene expression patterns that occur in this species, and facilitated the identification of genes that may possess similar expression patterns regardless of seasonal effects. The analysis of global gene expression in large and small fish reared under standard conditions provides an understanding of typical growth patterns that may be observed in this species. The identification of candidate genes by this study may provide insight into the mechanisms of growth in fishes and may help to identify candidate genes for growth.
Project description:Investigation of transcriptome dynamics of Japanese cedar (Cryptomeria japonica) in winter (Dec. 22-23, 2011) and summer (July 30-31, 2012). We investigated seasonal and diurnal transcriptome dynamics of Japanese cedar (Cryptomeria japonica) by analyzing shoot samples collected at four-hour interval for two days in winter and summer, respectively. We first collected sequence data of expressed genes from shoots to designed microarray probes. Microarray analysis revealed the significant difference of transcripts between summer and winter, and the diurnal transcriptome dynamic in summer.Statistical analysis indicated that about 7.7 % of unique genes showed diurnal rhythms with more than two-fold of peak-to-trough amplitude in summer.