Project description:To characterize the effect of lactic acid on the L. plantarum growth and adaptation, we investigated the transcriptome under hydrochloride (HCl) or lactic acid at the early stage of the growth.
Project description:Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine-containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive-associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi-locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.
Project description:Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation, that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated Lactic Acid Bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the cross-talk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an active host-microbe interaction that highlights an immunoregulatory role of C9O4, able to revert both the detrimental effects of IFN-γ through the JAK/STAT pathway and the apoptosis process in inflamed cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases.
Project description:Bacteria that live in the acidic environment face number of growth-related challenges from the intracellular pH changes. In order to survive under acidic environment, Lactic acid bacteria must employ multiple genes and proteins to regulate the relative pathways.
Project description:Bacteria that live in the acidic environment face number of growth-related challenges from the intracellular pH changes. In order to survive under acidic environment, Lactic acid bacteria must employ multiple genes and proteins to regulate the relative pathways.