Project description:We performed RNAseq for gene expression analysis for six strains of Acinetobacter Baumannii isolated from blood samples (defined as strains 1, 2, 3, 4 and 6) of patients hospitalized at the University Hospital \\"San Giovanni di Dio e Ruggi d'Aragona\\" (Salerno, Italy)
Project description:The experiment contains native Tn-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and genomic DNA was isolated. We then used PCR to select for DNA regions containing a junction between ISAba13 and chromosomal DNA. Libraries were then prepared using these DNA fragments.
Project description:The experiment contains 3C-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and nucleoprotein was cross-linked using formaldehyde. Genomic DNA was isolated and digested with NlaIII before being ligated with T4 ligase. Sequencing was then used to identify junctions between ligated DNA sequences.
Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:In recent years, the Gram-negative bacterium Acinetobacter baumannii has garnered considerable attention for its unprecedented capacity to rapidly develop resistance to antibacterial therapeutics. This is coupled with the seemingly epidemic emergence of new hyper-virulent strains. Although strain-specific differences for A. baumannii isolates have been well described, these studies have primarily focused on proteinaceous factors. At present, only limited publications have investigated the presence and role of small regulatory RNA (sRNA) transcripts. Herein, we perform such an analysis, describing the RNA-seq-based identification of 78 A. baumannii sRNAs in the AB5075 background. Together with six previously identified elements, we include each of these in a new genome annotation file, which will serve as a tool to investigate regulatory events in this organism. Our work reveals that the sRNAs display high expression, accounting for >50 % of the 20 most strongly expressed genes. Through conservation analysis we identified six classes of similar sRNAs, with one found to be particularly abundant and homologous to regulatory, C4 antisense RNAs found in bacteriophages. These elements appear to be processed from larger transcripts in an analogous manner to the phage C4 molecule and are putatively controlled by two further sRNAs that are strongly antisense to them. Collectively, this study offers a detailed view of the sRNA content of A. baumannii, exposing sequence and structural conservation amongst these elements, and provides novel insight into the potential evolution, and role, of these understudied regulatory molecules. This study is based on the annotation of novel sRNAs on basis of an Acinetobacter baumannii RNA sequencing dataset. Each sample was generated by pooling three independent biological replicate RNA preps
Project description:Acinetobacter baumannii AB042, a triclosan-resistant mutant, was examined for modulated gene expression using whole genome sequencing, transcriptomics, and proteomics in order to understand the mechanism of triclosan-resistance as well as its impact on A. Baumannii.