Project description:High representation by ammonia-oxidizing archaea (AOA) in marine systems is consistent with their high affinity for ammonia, efficient carbon fixation, and copper (Cu)-centric respiratory system. However, little is known about their response to nutrient stress. We therefore used global transcriptional and proteomic analyses to characterize the response of a model AOA, Nitrosopumilus maritimus SCM1, to ammonia starvation, Cu limitation, and Cu excess. Most predicted protein-coding genes were transcribed in exponentially growing cells, and of ~74% detected in the proteome, ~6% were modified by N-terminal acetylation. The general response to ammonia starvation and Cu-stress was down-regulation of genes for energy generation and biosynthesis. Cells rapidly depleted transcripts for the A and B subunits of ammonia monooxygenase (AMO) in response to ammonia starvation, yet retained relatively high levels of transcripts for the C subunit. Thus, similar to ammonia-oxidizing bacteria, selective retention of amoC transcripts during starvation appears important for subsequent recovery, and also suggests that AMO subunit transcript ratios could be used to assess the physiological status of marine populations. Unexpectedly, cobalamin biosynthesis was upregulated in response to both ammonia starvation and Cu-stress, indicating the importance of this cofactor in retaining functional integrity during times of stress.
Project description:Genomic DNA extracted from two different Photobacterium profundum strains: SS9 strain (completely sequenced and used to made the microarray) and DSJ4 strain were labeled with Cy3 and Cy5 fluorophores and competitively hybridized on the microarray built on the basis of the SS9 strain genomic sequence. Aim: the identification of the genomic regions absent in the DSJ4 strain with respect to the SS9 strain. The SS9 strain was isolated from the Sulu Trench and display an optimum growth at 28 MPa (2800 metres of depth). The DSJ4 strain was recovered from a sediment sample obtained from the Ryukyu Trench (Japan) at a depth of 5110 m and displays an optimum growth at 10 MPa (but shows no significant change in growth at pressure up to 50 MPa).
Project description:Transcriptional profiling of marine ammonia oxidizing archaea Nitrosopumilus maritimus cells comparing exponential phase control cells with cells under 24 hours starvation and with cells under recovery after 24 hours starvation. Goal was to determine the effects of global transcriptional responses of N. maritimus cells under ammonia starvation and recovery conditions.
Project description:Marine sponges represent one of the few eukaryotic groups that ubiquitously harbor symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of archaeal ammonia oxidizers (AOA). In this study, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and direct isotope-based functional assays. We demonstrate that the I. basta symbiont is not closely related to other genomically sequenced sponge AOA and is a member of a new genus. “Candidatus Nitrosospongia bastadiensis” is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbor nitrite-oxidizing microbes. Consistently, Ca N. bastadiensis encodes and expresses the genetic repertoire required for chemolithoautotrophic ammonia oxidation. Furthermore, we show that this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system likely involved in defense against foreign DNA, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard