Project description:Identification of the interaction partners of the protein ecdysoneless (Ecd) in Drosophila melanogaster S2 cells as well as profiling of the changes in binding for mutant, truncated Ecd del34 protein.
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs from S2 cells. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:We analyzed mRNA expression profiles in Drosophila melanogaster S2 cells that had been depleted of proteins known as mRNA decapping co-activators. mRNA decapping is catalyzed by DCP2, and DCP2 activity is stimulated by decapping co-activators. This group of proteins includes DCP1, Hedls (also known as Ge-1), LSm16 (also known as EDC3), rck/p54 (also known as DHH1 or Me31B), Pat1, and the heptameric LSm1-7 complex. We used the RNA interference technology to deplete cultured S2 cells of DCP1 (CG11183), Ge-1 (CG6181), Pat1 (CG5208), LSm16 (CG6311), and LSm1 (CG4279). We used Affymetrix oligonucleotide microarrays to analyze two independent samples for each depletion. We included the following controls: mock RNAi treatment and GFP dsRNA treatment (two profiles each). We also profiled AGO1 (CG6671) depleted cells (3 independent samples). AGO1 is a key protein required for miRNA-mediated gene silencing. We had shown previously that silencing by miRNAs involves decapping of target mRNAs.
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs from S2 cells. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Small RNAs were sequenced from D. melanogaster S2 cells obtained from Gerald Rubin's lab. Raw sequences were clipped by 3' linker sequences recognition, and select clipped sequences longer than 18 nt.