Project description:There is a growing concern about the occurrence of bisphenols and benzophenone UV filters in natural ecosystems, while data are limited regarding their actual occurrence in wildlife species, especially in raptors. In this study, concentrations of bisphenol and benzophenone UV filter analogues were determined in liver tissue samples (n = 38) from white-tailed eagles (Haliaeetus albicilla) that were found dead in Smøla (2006-2018), which is a Norwegian municipality that holds one of the densest breeding populations of white-tailed eagles in Europe. Bisphenol AF (BPAF; a fluorinated analogue) was the most ubiquitous contaminant since it was detected in 32 liver samples at concentrations ranging from 1.08 to 6.68 ng/g wet weight (w.w.), followed by bisphenol A (BPA, mean 10.4 ng/g w.w.), benzophenone-1 (BzP-1, mean 3.24 ng/g w.w.), and 4-hydroxybenzophenone (4-OH-BzP, mean 0.62 ng/g w.w.). The concentrations found in livers suggested that white-tailed eagles potentially accumulate bisphenols and benzophenone UV filters, which raises concern, as these plastic and personal care product-related emerging contaminants can show endocrine-disrupting properties. The high detection frequency of the fluorinated BPAF warrants further attention as other fluorinated compounds have proven to be extremely persistent and potentially harmful to wildlife.
Project description:The long-tailed macaque, also referred to as cynomolgus monkey (Macaca fascicularis), is one of the most important non-human primate animal models in basic and applied biomedical research. To improve the predictive power of primate experiments for humans, we determined the genome sequence of a Macaca fascicularis female of Mauritian origin using a whole-genome shotgun sequencing approach. We applied a template switch strategy which employs either the rhesus or the human genome to assemble sequence reads. The 6-fold sequence coverage of the draft genome sequence enabled discovery of about 2.1 million potential single-nucleotide polymorphisms based on occurrence of a dimorphic nucleotide at a given position in the genome sequence. Homology-based annotation allowed us to identify 17,387 orthologs of human protein-coding genes in the M. fascicularis draft genome and the predicted transcripts enabled the design of a M. fascicularis-specific gene expression microarray. Using liver samples from 36 individuals of different geographic origin, we identified 718 genes with highly variable expression in liver, whereas the majority of the transcriptome shows relatively stable and comparable expression. Knowledge of the M. fascicularis draft genome is an important contribution to both the use of this animal in disease models and the safety assessment of drugs and their metabolites. In particular, this information allows high-resolution genotyping and microarray-based gene expression profiling for animal stratification, thereby allowing the use of well-characterized animals for safety testing. Finally, the genome sequence presented here is a significant contribution to the global "3R" animal welfare initiative, which has the goal to reduce, refine and replace animal experiments.