Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:Comparative transcriptional profiling of N. crassa grown on five major crop straws of China (barley, corn, rice, soybean and wheat straws) revealed a highly overlapping group of 430 genes, the Biomass commonly Induced Core Set (BICS). A large proportion of induced carbohydrate-active-enzyme (CAZy) genes (82 out of 113) were also conserved across the five plant straws. Excluding 178 genes within the BICS that were also up-regulated under no-carbon conditions, the remaining 252 genes were defined as the Biomass Regulon (BR). Interestingly, 88 genes were only induced by plant biomass and not by three individual polysaccharides (Avicel, xylan, and pectin); these were denoted as the Biomass Unique Set (BUS). Deletion of one BUS gene, the transcriptional regulator rca-1, significantly improved lignocellulase production using plant biomass as the sole carbon source, possibly functioning via de-repression of the regulator clr-2. Thus, this result suggests that rca-1 is a potential engineering target for biorefineries, especially for plant biomass direct microbial conversion processes. Conidia of Neurospora crass wild type were inoculated at 10^6 conidia/mL into 100 mL 1×Vogel’s salts with 2% (w/w) ground crop straws, barley straw, corn straw, rice straw, soybean straw and wheat straw respectively for 30 h or 2% sucrose for 16 h. Then, mycelia were harvested through filtration and immediately frozen in liquid nitrogen.Total RNA from frozen sample was isolated with TRIzol reagent (Invitrogen) and further treated with DNase I (RNeasy Mini Kit, QIAGEN). The qualified RNA was prepared with standard protocol from Shenzhen BGI (China) and sequenced on the Illumina HiSeqTM 2000 platform.
Project description:Straw return is crucial for the sustainable development of rice planting. To investigate the response of rice leaves to rice straw return, we analyzed the physiological index of rice leaves and measured differentially expressed protein (DEPs) and differentially expressed metabolites (DEMs) levels in rice leaves by the use of proteomics and metabolomics approaches. The results showed that, compared with no rice straw return, rice straw return significantly decreased the dry weight of rice plants and nonstructural carbohydrate contents and destroyed the chloroplast ultrastructure. In rice leaves under rice straw return, 329 DEPs were upregulated, 303 DEPs were downregulated, 44 DEMs were upregulated, and 71 DEMs were downregulated. These DEPs and DEMs were mainly involved in various molecular processes, including photosynthesis, carbon fixation in photosynthetic organisms, glycolysis, and the citric acid cycle. Rice straw return promoted the accumulation of osmotic adjustment substances, such as organic acids, amino acids, and other substances, and reduced the material supply and energy production of carbon metabolism, thus inhibiting the growth of rice.
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH-controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased pH above a threshold (~ 6.2) lead to carbon loss through increased decomposition following alleviation of acid-retardation of microbial growth. However, loss of carbon with intensification in near neutral-pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to tradeoffs with stress alleviation and resource acquisition. Thus, less intensive management practices in near neutral-pH soils have more potential for carbon storage through increased microbial growth efficiency; whereas, in acidic soils microbial growth is a bigger constraint on decomposition rates.
Project description:Various saprotrophic microorganisms, especially filamentous fungi, can efficiently degrade lignocellulose that is one of the most abundant natural material on earth. It consists of complex carbohydrates and aromatic polymers found in plant cell wall and thus in plant debris. Aspergillus fumigatus Z5 was isolated from compost heaps and showed highly efficient plant biomass-degradation capability.Genome analysis revealed an impressive array of genes encoding cellulases, hemicellulases, and pectinases involved in lignocellulosic biomass degradation. We sequenced the transcriptomes of Aspergillus fumigatus Z5 induced by sucrose, xylan, cellulose and rice straw, respectively. There were 444, 1711 and 1386 significantly differently (q-value ⤠0.0001 and |log2 of the ratio of the RPM values| ⥠2) expressed genes in xylan, cellulose and rice straw,respectively, relative to sucrose control. After incubation at 45 â, 145rpm for 20 hours with sucrose as the carbon source, mycelia were induced for 16 hours using xylan, cellulose and rice straw, respectively. Transcriptome induced by sucrose was used as the control when comparing the differences between other three transcriptomes (induced by xylan, cellulose and rice straw, respectively).