Project description:Micromonospora sp. strain WMMA1996 was isolated in 2013 off the coast of the Florida Keys, United States, from a marine sponge as part of bacterial coculture-based drug discovery initiatives. Analysis of the ∼6.44-Mb genome reveals this microbe's potential role in the discovery of new drugs.
Project description:Actinomycete bacteria isolated from freshwater environments are an unexplored source of natural products. Here we report the complete genome of the Great Lakes-derived Micromonospora sp. strain B006, revealing its potential for natural product biosynthesis. The 7-megabase pair chromosome of strain B006 was sequenced using Illumina and Oxford Nanopore technologies followed by Sanger sequencing to close remaining gaps. All identified biosynthetic gene clusters (BGCs) were manually curated. Five known BGCs were identified encoding desferrioxamine, alkyl- O-dihydrogeranylmethoxyhydroquinone, a spore pigment, sioxanthin, and diazepinomicin, which is currently in phase II clinical trials to treat Phelan-McDermid syndrome and co-morbid epilepsy. We report here that strain B006 is indeed a producer of diazepinomicin and at yields higher than previously reported. Moreover, 11 of the 16 identified BGCs are orphan, eight of which were transcriptionally active under the culture condition tested. Orphan BGCs include an enediyne polyketide synthase and an uncharacteristically large, 36-module polyketide synthase-nonribosomal peptide synthetase BGC. We developed a genetics system for Micromonospora sp. B006 that will contribute to deorphaning BGCs in the future. This study is one of the few attempts to report the biosynthetic capacity of a freshwater-derived actinomycete and highlights this resource as a potential reservoir for new natural products.
Project description:Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G9 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G9 was assigned to the species Micromonospora aurantiaca.
Project description:A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.
Project description:Two new 20-membered macrolides, levantilide A and B, were isolated from the Micromonospora strain M71-A77. Strain M71-A77 was recovered from an Eastern Mediterranean deep-sea sediment sample and revealed to produce the levantilides under in situ salinity of 38.6 ‰. The chemical structures of the levantilides were elucidated on the basis of different one- and two- dimensional NMR experiments. Levantilide A exhibits a moderate antiproliferative activity against several tumor cell lines.
Project description:The type isolates of species Micromonospora saelicesensis and Micromonospora noduli are Gram-stain positive actinobacteria that were originally isolated from nitrogen fixing nodules of the legumes Lupinus angustifolius and Pisum sativum, respectively. These two species are very closely related and questions arise as to whether they should be merged into a single species. To better delineate the relationship of M. saelicesensis and M. noduli, 10 strains isolated from plant tissue (nodules and leaves) and identified by their 16S rRNA gene sequences as either M. saelicensesis or M. noduli, based on a cut-off value of ≥99.5% were selected for whole-genome sequencing and compared with the type strains of M. saelicesensis Lupac 09T and M. noduli GUI43T using overall genome relatedness indices (OGRI) which included ANI, OrthoANI and digital DNA-DNA hybridization. Whole- and core-genome phylogenomic analyses were also carried out. These results were compared with the topologies of the 16S rRNA and gyrB gene phylogenies. Good correlation was found between all trees except for the 16S rRNA gene. Overall results also supported the current classification of M. saelicesensis and M. noduli as separate species. Especially useful was the core-genome phylogenetic analyses based on 92 genes and the dDDH results which were highly correlated. The importance of using more than one strain for a better definition of a species was also shown. A series of in vitro phenotypic assays performed at different times were compared with in silico predictions based on genomic data. In vitro phenotypic tests showed discrepancies among the independent studies, confirming the lack of reproducibility even when tests were performed in the same laboratory. On the other hand, the use of in silico predictions proved useful for defining a stable phenotype profile among the strains analyzed. These results provide a working framework for defining Micromonospora species at the genomic and phenotypic level.
Project description:To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.