Project description:In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients like glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programs. Previously, we characterized short- and long-term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply, while studying a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug flow reactor (PFR). Genes were repeatedly switched on/off when E. coli returned to the STR. Moreover, E. coli revealed highly diverging long-term transcriptional responses in ammonia compared to glucose fluctuations. The identification of target genes may help to create robust cells and processes for large-scale application.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR. AsxR was cloned under the control the arabinose inducible promoter Para. Escherichia coli O157:H7 str. TUV93-0 with pAsxR or empty vector was cultured in MEM-HEPES media to an OD600 of 0.8 and 0.2% arabinose added. 10min after addition of arabinose 10ml of cells were harvested and and pellets resuspended in 1ml of Trizol and total RNA isolated. RNAs were labelled using the SuperScript Plus indirect cDNA labelling System. Triplicate control RNAs were pooled and hybridised to seperate AsxR test RNAs on three microarays. Arrays were hybridised using the Maui hybridisation platform and Scann using and Axon Autoloader Scanner. GenePix software was used to analyse images and GPR files were analysed using Genespring 7.3.1.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:The intention of this study is to analyse the effect of antibiotics on the gene expression of Escherichia coli. Shaking-flask cultivations of Escherichia coli K12GFP-UTL2 were carried out with a medium containing nalidixic acid. Cultures with antibiotic-free medium, which were run in an identical way, served as reference. Samples were taken at different times during the cultivations, the RNA was isolated and hybridised on whole genome yeast microarrays. Keywords: Influence of toxins on gene expression in E. coli
Project description:In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients like ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programs which result in production yield losses. This study is focused on transcriptional changes due to fluctuating ammonia supply, while sampling a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug flow reactor (PFR). A previously created mutant E.coli SR was used to limit the reaction to environmntal influences via knock-out of stringent response. E. coli WT revealed highly diverging short-term transcriptional responses in ammonia fluctuation compared E. coli SR.