Project description:PFGRC has developed a cost effective alternative to complete genome sequencing in order to study the genetic differences between closely related species and/or strains. The comparative genomics approach combines Gene Discovery (GD) and Comparative Genomic Hybridization (CGH) techniques, resulting in the design and production of species microarrays that represent the diversity of a species beyond just the sequenced reference strain(s) used in the initial microarray design. These species arrays may then be used to interrogate hundreds of closely related strains in order to further unravel their evolutionary relationships. The Pneumococcus are among most deadly pathogens world-wide. The infections and outbreaks caused by this pathogens is quite frequent despite existing diagnostic network and therapeutic means. Therefore, developing reliable diagnostic tools and efficient (broad-spectrum) therapeutics for Streptococcus pneumoniae remain a public health priority for every country in world today. The comparative genomics study will provide the largest hitherto genomic data sets regarding this pathogen.These large data sets will enable us as well as other members of scientific community to conduct comprehensive data mining in the form of gene association studies with statistical power and significance.
Project description:PFGRC has developed a cost effective alternative to complete genome sequencing in order to study the genetic differences between closely related species and/or strains. The comparative genomics approach combines Gene Discovery (GD) and Comparative Genomic Hybridization (CGH) techniques, resulting in the design and production of species microarrays that represent the diversity of a species beyond just the sequenced reference strain(s) used in the initial microarray design. These species arrays may then be used to interrogate hundreds of closely related strains in order to further unravel their evolutionary relationships. The Neissiria are among most deadly pathogens world-wide. The infections and outbreaks caused by this pathogens is quite frequent despite existing diagnostic network and therapeutic means. Therefore, developing reliable diagnostic tools and efficient (broad-spectrum) therapeutics for Neisseria meningitidis remain a public health priority for every country in world today. The comparative genomics study will provide the largest hitherto genomic data sets regarding this pathogen.These large data sets will enable us as well as other members of scientific community to conduct comprehensive data mining in the form of gene association studies with statistical power and significance.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.