Project description:Several systemic diseases affect Vitis vinifera worldwide with important consequent management costs. Phytoplasma and viruses represent the most detrimental pathogens inducing symptoms and metabolic alterations that modify quantitatively the crop production. In the aim to investigate the plant/pathogen interactions, different grapevine samples, naturally affected (in mixed or single infections) by Stolbur phytoplasma (agent of Bois Noir disease) and viruses, in comparison to healthy and recovered controls, to identify the plant response to systemic pathogen infection. The preliminary results showed that expression levels of thousands of genes were altered in infected plants, involving various metabolic pathways.
Project description:This clinical trial hypothesize that Gut Microbiota (bacteria, viruses, fungi)play a major role in the occurrence and progression of many chronic gastrointestinal diseases like Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colo-Rectal Cancer.
Hence, aims to study the spectrum of such microbiota in these patients as compared to normal subjects, by utilizing metagenomic techniques rather than cultural methods.
Project description:Several systemic diseases affect Vitis vinifera worldwide with important consequent management costs. Phytoplasma and viruses represent the most detrimental pathogens inducing symptoms and metabolic alterations that modify quantitatively the crop production. In the aim to investigate the plant/pathogen interactions, different grapevine samples, naturally affected (in mixed or single infections) by Stolbur phytoplasma (agent of Bois Noir disease) and viruses, in comparison to healthy and recovered controls, to identify the plant response to systemic pathogen infection. The preliminary results showed that expression levels of thousands of genes were altered in infected plants, involving various metabolic pathways. Total RNA was extracted from central leaf midribs and petioles from different V. vinifera cultivars in different conditions (healthy, infected and recovered). Microarray analyses were conducted using different biological replicates for treatment. The submitter of this dataset can no longer locate the raw data
Project description:Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots.
Project description:Collectively, viruses are the principal cause of cancers arising in patients with immune dysfunction, including HIV+ patients. Kaposi’s Sarcoma (KS) etiologically linked to KSHV continues to be the most common AIDS-associated tumor. The involvement of oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage from a variety of pathogenic bacteria. In the current study, by using 16S rRNA based pyrosequencing, we found that oral shedding of KSHV altered oral microbiota signature in HIV+ patients which may contribute to virus-associated malignancies development.
Project description:Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travelling, climate changes and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. For many of them, the disease symptoms are similar to each other, as well as to other more common diseases, making them difficult to diagnose. A rapid identification will help to decide about specific treatment and appropriate case management. Real-time PCR is commonly used for specific virus detection in clinical samples. A diagnostic microarray containing probes for all human viruses, could replace hundreds of specific PCR-reactions and identify all viruses by one assay and thereby remove the need for a clear clinical hypothesis. We show that the Microbial Detection Array successfully identifies emerging viruses present in both non-clinical and clinical samples. Fifteen clinical samples and 27 non-clinical samples (cell culture supernantants or purified viral DNA or RNA) were analyzed for presence of emerging viruses using the MDA microarray.
Project description:Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travelling, climate changes and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. For many of them, the disease symptoms are similar to each other, as well as to other more common diseases, making them difficult to diagnose. A rapid identification will help to decide about specific treatment and appropriate case management. Real-time PCR is commonly used for specific virus detection in clinical samples. A diagnostic microarray containing probes for all human viruses, could replace hundreds of specific PCR-reactions and identify all viruses by one assay and thereby remove the need for a clear clinical hypothesis. We show that the Microbial Detection Array successfully identifies emerging viruses present in both non-clinical and clinical samples. Twenty-four clinical samples and 40 non-clinical samples (cell culture supernantants or purified viral DNA or RNA) were analyzed for presence of emerging viruses using the MDA microarray.