Project description:Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions. Parental MDA-MB-231 cells and MDA-MB-231(SA) cells were cultured in cell culture flasks. RNA was isolated in order to compare the gene expression profiles of these cell variants. Total of two samples. No replicates.
Project description:Background: Paraptosis is a programmed cell death characterized by cytoplasmic vacuolation, which has been used as an alternative cell death method for cancer treatment and is associated with cancer resistance. However, the mechanisms underlying the progression of paraptosis in cancer cells are largely unknown. Methods: Paraptosis-inducing agents, CPYPP, cyclosporin, and curcumin, were utilized to investigate the underlying mechanism of paraptosis. Next-generation sequencing and liquid chromatography-mass spectrometry analysis revealed significant changes in gene and protein expressions. Pharmacological and genetic approaches were employed to elucidate the transcriptional events related to paraptosis. The xenograft mouse models were employed to evaluate the potential of paraptosis as an anti-cancer strategy. Results: CPYPP, cyclosporin A, and curcumin induced cytoplasmic vacuolization and triggered paraptosis in cancer cells. The paraptotic program involved reactive oxygen species (ROS) provocation and the activation of proteostatic dynamics, leading to transcriptional activation associated with redox homeostasis and proteostasis. Both pharmacological and genetic approaches suggested that cyclin-dependent kinase (CDK) 7/9 drive paraptotic progression in a mutually-dependent manner with heat shock proteins (HSPs). Proteostatic stress, such as accumulated cysteine-thiols, HSPs, ubiquitin-proteasome system, endoplasmic reticulum stress, and unfolded protein response, as well as ROS provocation primarily within the nucleus, enforced CDK7/CDK9–Rpb1 (RNAPII subunit B1) activation by potentiating its interaction with HSPs and protein kinase R (PKR) in a forward loop, amplifying transcriptional regulation and thereby exacerbating proteotoxicity leading to initiate paraptosis. A xenograft mouse model with OECM-1 cells further confirmed the induction of paraptosis against tumor growth. Conclusions We propose a novel regulatory paradigm in which the activation of CDK7/CDK9–Rpb1 by nuclear proteostatic stress mediates transcriptional regulation to prime cancer cell paraptosis.
Project description:Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.
Project description:Currently the greatest challenge in oncology is the lack of homogeneity of the lesions where different cell components respond differently to treatment. There is growing consensus that monotherapies are insufficient to eradicate the disease and there is an unmet need for more potent combinatorial treatments. We have previously shown that hypericin photodynamic therapy (HYP-PDT) triggers electron transport chain (ETC) inhibition in cell mitochondria. We have also shown that tamoxifen (TAM) enhances cytotoxicity in cells with high respiration, when combined with ETC inhibitors. Herein we introduce a synergistic treatment based on TAM chemotherapy and HYP-PDT. We tested this novel combinatorial treatment (HYPERTAM) in two metabolically different breast cancer cell lines, the triple-negative MDA-MB-231 and the estrogen-receptor-positive MCF7, the former being quite sensitive to HYP-PDT while the latter very responsive to TAM treatment. In addition, we investigated the mode of death, effect of lipid peroxidation, and the effect on cell metabolism. The results were quite astounding. HYPERTAM exhibited over 90% cytotoxicity in both cell lines. This cytotoxicity was in the form of both necrosis and autophagy, while high levels of lipid peroxidation were observed in both cell lines. We, consequently, translated our research to an in vivo pilot study encompassing the MDA-MB-231 and MCF7 tumor models in NOD SCID-γ immunocompromised mice. Both treatment cohorts responded very positively to HYPERTRAM, which significantly prolonged mice survival. HYPERTAM is a potent, synergistic modality, which may lay the foundations for a novel, composite anticancer treatment, effective in diverse tumor types.
Project description:Human telomeres were one of the first discovered and characterized sequences forming quadruplex structures. Association of these structures with oncogenic and tumor suppressor proteins suggests their important role in cancer development and therapy efficacy. Since cationic porphyrin TMPyP4 is known as G-quadruplex stabilizer and telomerase inhibitor, the aim of the study was to analyze the anticancer properties of this compound in two different human breast-cancer MCF7 and MDA-MB-231 cell lines. The cytotoxicity of TMPyP4 alone or in combination with doxorubicin was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) and clonogenic assays, and the cell-cycle alterations were analyzed by flow cytometry. Telomerase expression and activity were evaluated using qPCR and telomeric repeat amplification protocol (TRAP) assays, respectively. The contribution of G-quadruplex inhibitor to protein pathways engaged in cell survival, DNA repair, adhesion, and migration was performed using immunodetection. Scratch assay and functional assessment of migration and cell adhesion were also performed. Consequently, it was revealed that in the short term, TMPyP4 neither revealed cytotoxic effect nor sensitized MCF7 and MDA-MB-231 to doxorubicin, but altered breast-cancer cell adhesion and migration. It suggests that TMPyP4 might substantially contribute to a significant decrease in cancer cell dissemination and, consequently, cancer cell survival reduction. Importantly, this effect might not be associated with telomeres or telomerase.
Project description:Breast cancer is one of the cancer-related leading causes of death worldwide. Treatment of breast cancer is complex and challenging especially when metastasis is developed. In this study, we established a new concept of using infrared radiation as an alternative approach to breast cancer treatment. We used middle infrared (MIR) in the wavelength range of 3 to 5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells, but did not affect the growth of normal breast epithelium cells. We performed iTRAQ-coupled LC-MS/MS system to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1,749 proteins were quantified and 167 proteins were considered to be regulated by MIR. Applying the functional enrichment analysis on the proteomics results, we confirmed that MIR caused G2/M cell cycle arrest, remodeled microtubule network to an astral pole arrangement, altered actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Together, our results uncover the collaborative effects of MIR regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.
Project description:RagC was immunoprecipitated from human breast cancer MDA-MB-231 cells treated or not with the Arp2/3 complex inhibitor, CK666, and the RagC interactome was analyzed by mass-spectrometry.
Project description:MDA-MB-231 human breast cancer cells were injected orthotopiclly into mammary glands 4 of female NOD SCID mice 4-weeks after sub-cutaneous implantation of human femoral bone chips. Primary tumour, bone chips containing metastatic deposits and naive bone chips were isolated and mRNA analysed for gene expression to determine genetic signitures associated with breast cancer bone metastasis.