Project description:Microbial community analyses reveals distinct community structures and prokaryotic consortiums in abyssal and hadal sediment collected from three trenches located at the northwest Pacific Ocean
Project description:The objective was to identify functional genes encoded by Fungi and fungal-like organisms to assess putative ecological roles Using the GeoChip microarray, we detected fungal genes involved in the complete assimilation of nitrate and the degradation of lignin, as well as evidence for Partitiviridae (a mycovirus) that likely regulates fungal populations in the marine environment. These results demonstrate the potential for fungi to degrade terrigenously-sourced molecules, such as permafrost and compete with algae for nitrate during blooms. Ultimately, these data suggest that marine fungi could be as important in oceanic ecosystems as they are in freshwater environments.
Project description:The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in freeze-dried whole sediment samples and their corresponding organic extracts in parallel. To this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Microarray analysis revealed several classes of significantly regulated genes which could to a considerable extent be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism. Additionally, different gene expression was shown to be less influenced by the sampling site than by the method of exposure, which could be attributed to differential bioavailability of contaminants. Microarray analyses were performed with early life stages of zebrafish exposed to sediment extracts or freeze-dried sediment from three sampling sites (Ehingen, Lauchert, Sigmaringen) along the Upper part of the Danube River, Germany. The expression profiles were compared within the sampling sites, between the exposure scheme and to the expression pattern of model toxicants, such as 4-chloroaniline, Cadmium, DDT, TCDD, and Valproic acid (Gene Expression Omnibus Series GSE9357). Additionally, mechanism-specific bioassays and chemical analysis of the sediments have been combined and compared to the present gene expression data.
Project description:The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in freeze-dried whole sediment samples and their corresponding organic extracts in parallel. To this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Microarray analysis revealed several classes of significantly regulated genes which could to a considerable extent be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism. Additionally, different gene expression was shown to be less influenced by the sampling site than by the method of exposure, which could be attributed to differential bioavailability of contaminants.
Project description:The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This proof-of-concept study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in sediment extracts. For this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Microarray analysis revealed several classes of significantly regulated genes which could to a considerably extend be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism.