Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression. Two-condition experiment, control cells vs. kanamycin treated cells. Biological replicates: 2 control replicates, 2 treated replicates. Pooling of 5 technical replicates for each biological replicate.
Project description:Lignocellulose degradation by microbes plays a central role in global carbon cycling, human gut metabolism, and renewable energy technologies While considerable effort has been put into understanding the biochemical aspects of lignocellulose degradation, much less work has been done to understand how these enzymes work in an in vivo context Here, we report a systems level study of xylan degradation in the saprophytic bacterium Cellvibrio japonicus Transcriptome analysis indicated seven genes that encode carbohydrate active enzymes were up-regulated during growth with xylan containing media In-frame deletion analysis of these genes found that only gly43F is critical for utilization of xylo-oligosaccharides, xylan, and arabinoxylan Heterologous expression of gly43F was sufficient for the utilization of xylo-oligosaccharides in Escherichia coli Additional analysis found that the xyn11A, xyn11B, abf43L, abf43K, and abf51A gene products were critical for utilization of arabinoxylan Furthermore, a predicted transporter (CJA_1315) was required for effective utilization of xylan substrates, and we propose this unannotated gene be called xntA (xylan transporter A) Our major findings are 1) C japonicus employs both secreted and surface associated enzymes for xylan degradation, which differs from the strategy used for cellulose degradation, and 2) a single cytoplasmic β-xylosidase is essential for the utilization of xylo-oligosaccharides
Project description:Paenibacillus larvae, the causal agent of American Foulbrood disease (AFB), affects honeybee health worldwide. The present study investigates the transcriptional response of this Gram-positive, endospore-forming bacterium to bodily fluids from honeybee larvae. Four different conditions were evaluated with a loop design: sampling of in vitro grown P. larvae cultures one or four hours after addition of larval fluids or BHIT-broth (C1, T1, C4, T4).
Project description:Paenibacillus polymyxa is a root-associated plant growth-promoting rhizobacterium. It was reported that many strains of P. polymyxa naturally exhibited the phenotypic variation. In the phase variation, the characteristics of the wild-type ‘B’ and the variant ‘F’ are very different in sporulation formation, motility, antibiotic ability and so on. For better understanding of the actual physiological changes, we performed RNA-seq analyses of P. polymyxa E681 to compare genome wide patterns of gene expression. As a result, we obtained 1,062 differentially expressed genes related to flagellar assembly and transport systems.
Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
2020-08-05 | PXD015319 | Pride
Project description:Xylan utilization by Bifidobacterium pseudocatenulatum
| PRJNA745059 | ENA
Project description:Xylan utilization by Roseburia intestinalis