Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:Bacteriocins are natural antimicrobial peptides produced by a bacterium to kill closely related competitors. Streptococcus gallolyticus subsp. gallolyticus (Sgg) UCN34 produces a two-component bacteriocin named gallocin to colonize the gut by killing resident enterococci. In the present work, we investigated how gallocin was regulated by deleting individually three genes present in the locus and encoding potentially an inducing peptide (gsp), a histidine kinase (ghk) and a LytTR-containing response regulator (grr). Comparative transcriptional analyses of these three mutants as compared to the WT UCN34 showed that this 3- component regulatory system induces the transcription of the whole gallocin locus encoding gallocin but also five others putative bacteriocins and genes necessary for bacteriocins biosynthesis and secretion. Beside gallocin locus, only two other pairs of genes were coordinately induced in Sgg genome, encoding an ABC transporter and hypothetical proteins. We conclude that this regulatory system appears highly specialized in bacteriocins induction in Sgg UCN34.
Project description:Background: Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is a pathogen of infective endocarditis. It was observed previously that this bacterium survives longer in macrophages than other species and the phagocytic uptake by and survival in THP-1 macrophages is strain-dependent. Methods: The phagocytosis assay was performed with THP-1 macrophages. S. gallolyticus specific whole genome microarrays were used for transcriptome analysis. Results: Better survival in macrophages was observed for UCN34, BAA-2069 and ATCC43143 than for DSM16831 and LMG17956. S. gallolyticus strains show high resistance to tested bactericidal agents (acid, lysozyme and hydrogen peroxide). S. gallolyticus stimulates significant lower cytokine gene expression and causes less lysis of macrophages compared to the control strain S. aureus. S. gallolyticus reacts to oxidative burst with a higher gene expression of NADH oxidase initially at the early phase. Expression of genes involved in D-alanylation of teichoic acid, carbohydrate metabolism and transport systems were upregulated thereafter. Conclusion: S. gallolyticus is very resistant to bactericidal agents normally causing degradation of bacteria in phagolysosomes. Additionally, the D-alanylation of teichoic acid is an important factor for survival.
Project description:Background: Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is a pathogen of infective endocarditis. It was observed previously that this bacterium survives longer in macrophages than other species and the phagocytic uptake by and survival in THP-1 macrophages is strain-dependent. Methods: The phagocytosis assay was performed with THP-1 macrophages. S. gallolyticus specific whole genome microarrays were used for transcriptome analysis. Results: Better survival in macrophages was observed for UCN34, BAA-2069 and ATCC43143 than for DSM16831 and LMG17956. S. gallolyticus strains show high resistance to tested bactericidal agents (acid, lysozyme and hydrogen peroxide). S. gallolyticus stimulates significant lower cytokine gene expression and causes less lysis of macrophages compared to the control strain S. aureus. S. gallolyticus reacts to oxidative burst with a higher gene expression of NADH oxidase initially at the early phase. Expression of genes involved in D-alanylation of teichoic acid, carbohydrate metabolism and transport systems were upregulated thereafter. Conclusion: S. gallolyticus is very resistant to bactericidal agents normally causing degradation of bacteria in phagolysosomes. Additionally, the D-alanylation of teichoic acid is an important factor for survival.
Project description:Background: Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is a pathogen of infective endocarditis. It was observed previously that this bacterium survives longer in macrophages than other species and the phagocytic uptake by and survival in THP-1 macrophages is strain-dependent. Methods: The phagocytosis assay was performed with THP-1 macrophages. S. gallolyticus specific whole genome microarrays were used for transcriptome analysis. Results: Better survival in macrophages was observed for UCN34, BAA-2069 and ATCC43143 than for DSM16831 and LMG17956. S. gallolyticus strains show high resistance to tested bactericidal agents (acid, lysozyme and hydrogen peroxide). S. gallolyticus stimulates significant lower cytokine gene expression and causes less lysis of macrophages compared to the control strain S. aureus. S. gallolyticus reacts to oxidative burst with a higher gene expression of NADH oxidase initially at the early phase. Expression of genes involved in D-alanylation of teichoic acid, carbohydrate metabolism and transport systems were upregulated thereafter. Conclusion: S. gallolyticus is very resistant to bactericidal agents normally causing degradation of bacteria in phagolysosomes. Additionally, the D-alanylation of teichoic acid is an important factor for survival.
Project description:Background: Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is a pathogen of infective endocarditis. It was observed previously that this bacterium survives longer in macrophages than other species and the phagocytic uptake by and survival in THP-1 macrophages is strain-dependent. Methods: The phagocytosis assay was performed with THP-1 macrophages. S. gallolyticus specific whole genome microarrays were used for transcriptome analysis. Results: Better survival in macrophages was observed for UCN34, BAA-2069 and ATCC43143 than for DSM16831 and LMG17956. S. gallolyticus strains show high resistance to tested bactericidal agents (acid, lysozyme and hydrogen peroxide). S. gallolyticus stimulates significant lower cytokine gene expression and causes less lysis of macrophages compared to the control strain S. aureus. S. gallolyticus reacts to oxidative burst with a higher gene expression of NADH oxidase initially at the early phase. Expression of genes involved in D-alanylation of teichoic acid, carbohydrate metabolism and transport systems were upregulated thereafter. Conclusion: S. gallolyticus is very resistant to bactericidal agents normally causing degradation of bacteria in phagolysosomes. Additionally, the D-alanylation of teichoic acid is an important factor for survival.