Project description:We have identified an array of more than 500 repetitive sequences flanking the hsr gene, which encodes the major surface protein of the ferret pathogen Helicobacter mustelae. The repeats show identity exclusively to the amino-terminal half of Hsr. Analysis of Hsr from three strains indicated variability of exposed epitopes. Characterization of an hsr mutant showed that Hsr is not an adhesin.
Project description:The micro aerophilic pathogen Helicobacter mustelae synthesizes an oxygen-labile, iron-containing urease (UreA2B2) in addition to its standard nickel-containing enzyme (UreAB). An apoprotein form of the iron urease was prepared from ureA2B2-expressing recombinant Escherichia coli cells that were grown in minimal medium. Temperature-dependent circular dichroism measurements of holoprotein and apoprotein demonstrate an enhancement of thermal stability associated with the UreA2B2 metallocenter. In parallel to the situation reported for nickel activation of the standard urease apoprotein, incubation of UreA2B2 apoprotein with ferrous ions and bicarbonate generated urease activity in a portion of the nascent active sites. In addition, ferrous ions were shown to be capable of reductively activating the oxidized metallocenter. Resonance Raman spectra of the inactive, aerobically-purified UreA2B2 holoprotein exhibit vibrations at 495cm(-1) and 784cm(-1), consistent with ?(s) and ?(as) modes of an Fe(III)OFe(III) center; these modes undergo downshifts upon binding of urea and were unaffected by changes in pH. The low-frequency mode also exhibits an isotopic shift from 497 to 476cm(-1) upon (16)O/(18)O bulk water isotope substitution. Expression of subunits of the conventional nickel-containing Klebsiella aerogenes urease in cells grown in rich medium without nickel resulted in iron incorporation into a portion of the protein. The inactive iron-loaded species exhibited a UV-visible spectrum similar to oxidized UreA2B2 and was capable of being reductively activated under anoxic conditions. Results from these studies more clearly define the formation and unique properties of the iron urease metallocenter.
Project description:BackgroundHelicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H. pylori that causes gastric ulceration and cancer in its natural host. To improve understanding of H. mustelae pathogenesis, and the ulcerogenic and carcinogenic potential of helicobacters in general, we sequenced the H. mustelae genome, and identified 425 expressed proteins in the envelope and cytosolic proteome.ResultsThe H. mustelae genome lacks orthologs of major H. pylori virulence factors including CagA, VacA, BabA, SabA and OipA. However, it encodes ten autotransporter surface proteins, seven of which were detected in the expressed proteome, and which, except for the Hsr protein, are of unknown function. There are 26 putative outer membrane proteins in H. mustelae, some of which are most similar to the Hof proteins of H. pylori. Although homologs of putative virulence determinants of H. pylori (NapA, plasminogen adhesin, collagenase) and Campylobacter jejuni (CiaB, Peb4a) are present in the H. mustelae genome, it also includes a distinct complement of virulence-related genes including a haemagglutinin/haemolysin protein, and a glycosyl transferase for producing blood group A/B on its lipopolysaccharide. The most highly expressed 264 proteins in the cytosolic proteome included many corresponding proteins from H. pylori, but the rank profile in H. mustelae was distinctive. Of 27 genes shown to be essential for H. pylori colonization of the gerbil, all but three had orthologs in H. mustelae, identifying a shared set of core proteins for gastric persistence.ConclusionsThe determination of the genome sequence and expressed proteome of the ulcerogenic species H mustelae provides a comparative model for H. pylori to investigate bacterial gastric carcinogenesis in mammals, and to suggest ways whereby cag minus H. pylori strains might cause ulceration and cancer. The genome sequence was deposited in EMBL/GenBank/DDBJ under accession number FN555004.