Project description:Transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T (wild type) grown in MRS medium with or without heme. Mutant LMG18811T::pSIP1333A (mutating cydB gene which is essential in the respiratory chain) grown in MRS with or without heme. Comparing mutant and wildtype with and without heme.
Project description:Comparing of transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T grown in semi-defined medium with different carbon sources (20 mM glucose, ribose, inosine).
Project description:Transcriptonal profiling of Leuconostoc gasicomitatum LMG18811T (wild type) grown in MRS medium with or without heme. Mutant LMG18811T::pSIP1333A (mutating cydB gene which is essential in the respiratory chain) grown in MRS with or without heme. Comparing mutant and wildtype with and without heme. Two-condition experiments with wild type and cydB mutant. 1) wild type with heme vs wild type without heme (HVV), 2) wild type with heme vs mutant with heme (HMHV) 3) mutant with heme vs mutant without heme (MHM) 4) wildtype without heme vs mutant without heme (MV).
Project description:Mostly, lactic acid bacteria (LAB), including food-spoilage-associated, grow in communities consisting of several microbial species. The interspecies interactions eventually shape the structure and global activity of a given microbial community. Generally, the knowledge on system level responses of LAB (especially food-spoilage-associated) during such interactions is very limited. To study transcriptome responses during interactions between three MAP meat-spoilage-associated LAB (Leuconostoc gelidum subsp. gasicomitatum LMG 18811T, Lactococcus piscium MKFS47 and Lactobacillus oligofermentans LMG 22743T) we grew them separately in individual cultures and in mixed cultures pairwise (three combinations) and all together (triple culture) in three replicates on a glucose-containing growth medium (MRS) under microaerobic conditions at 25 C, samples were taken at three time points (3, 5 and 11 h) and extracted RNA were sequenced. The experiments were performed in two batches. At first (batch 1), co-cultivation of Le. gelidum and Lc. piscium accompanied with their individual cultures was performed and processed. The raw RNA-seq data for the individual culture of Lc. piscium from the batch 1 were uploaded earlier and are available in the ArrayExpress database under accession number E-MTAB-3245. Later (batch 2), two other pairwise cultures (Le. gelidum + Lb. oligofermentans and Lc. piscium + Lb. oligofermentans) and the triple culture were grown together with the individual cultures of all three LAB. Designations used for the sample names: G: Le. gelidum; P: Lc. piscium; O: Lb. oligofermentans; GO, PO, PG: pairwise cultures of the corresponding species; OPG: triple culture; b1: batch 1; b2: batch 2. Example: 3G2_b1: 3 h, Le. gelidum, 2nd replicate, batch 1; 11PO3_b2: 11 h, pairwise culture of Lc. piscium and Lb. oligofermentans, 3d replicate, batch 2. One sample (5PO3_b2) had very low number of reads ~ 9000, and, therefore, was not uploaded under this project. RNA extraction and library construction were done analogously as in the study (Andreevskaya M et al., 2015. Appl. Environ. Microbiol. 81:38003811, doi: 10.1128/AEM.00320-15). Ribosomal RNA was omitted. Libraries were sequenced in five lanes using SOLiD 5500XL (Life technologies, Foster City, Ca, USA) to produce 75 bp single-end reads. For the data submission, xsq files obtained from SOLiD 5500XL machine, were converted into fastq files. Adapter sequences were removed using cutadapt 1.4.1.
Project description:Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium causing spoilage of cold-stored, modified-atmosphere-packaged (MAP), nutrient-rich foods. Its role has been verified by challenge tests in gas and slime formation, development of pungent acidic and buttery off odors, and greening of beef. MAP meats have especially been prone to L. gasicomitatum spoilage. In addition, spoilage of vacuum-packaged vegetable sausages and marinated herring has been reported. The genomic sequencing project of L. gasicomitatum LMG 18811T was prompted by a need to understand the growth and spoilage potentials of L. gasicomitatum, to study its phylogeny, and to be able to knock out and overexpress the genes. Comparative genomic analysis was done within L. gasicomitatum LMG 18811T and the three fully assembled Leuconostoc genomes (those of Leuconostoc mesenteroides, Leuconostoc citreum, and Leuconostoc kimchii) available. The genome of L. gasicomitatum LMG 18811T is plasmid-free and contains a 1,954,080-bp circular chromosome with an average GC content of 36.7%. It includes genes for the phosphoketolase pathway and alternative pathways for pyruvate utilization. As interesting features associated with the growth and spoilage potential, LMG 18811T possesses utilization strategies for ribose, external nucleotides, nucleosides, and nucleobases and it has a functional electron transport chain requiring only externally supplied heme for respiration. In respect of the documented specific spoilage reactions, the pathways/genes associated with a buttery off odor, meat greening, and slime formation were recognized. Unexpectedly, genes associated with platelet binding and collagen adhesion were detected, but their functionality and role in food spoilage and processing environment contamination need further study.