Project description:Intracellular bacteria live in an environment rich in most essential metabolites but need special mechanisms to access these substrates. Nucleotide transport proteins (NTTs) catalyze the import of ATP and other nucleotides from the eukaryotic host into the bacterial cell and render de novo synthesis of these compounds dispensable. The draft genome sequence of Simkania negevensis strain Z, a chlamydial organism considered a newly emerging pathogen, revealed four genes encoding putative nucleotide transport proteins (SnNTT1 to SnNTT4), all of which are transcribed during growth of S. negevensis in Acanthamoeba host cells, as confirmed by reverse transcription-PCR. Using heterologous expression in Escherichia coli, we could show that SnNTT1 functions as an ATP/ADP antiporter, SnNTT2 as a guanine nucleotide/ATP/H(+) symporter driven by the membrane potential, and SnNTT3 as a nucleotide triphosphate antiporter. In addition, SnNTT3 is able to transport dCTP, which has not been shown for a prokaryotic transport protein before. No substrate could be identified for SnNTT4. Taking these data together, S. negevensis employs a set of nucleotide transport proteins to efficiently tap its host's energy and nucleotide pools. Although similar to other chlamydiae, these transporters show distinct and unique adaptations with respect to substrate specificities and mode of transport.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:This project is a proteomic comparison of Hyphomicrobium sp. MC8b grown with dichloromethane or with methanol. The datasets were obtained using the annotated genome of Hyphomicrobium sp. MC8b.
Project description:Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. This work is funded by Agency Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT; "Genome Science" Grant ID 221S0002).
Project description:Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genome project. This work is funded by Agency Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT; "Genome Science" Grant ID 221S0002).
Project description:Kingella negevensis is a newly described gram-negative bacterium in the Neisseriaceae family and is closely related to Kingella kingae, an important cause of pediatric osteoarticular infections and other invasive diseases. Like K. kingae, K. negevensis can be isolated from the oropharynx of young children, although at a much lower rate. Due to the potential for misidentification as K. kingae, the burden of disease due to K. negevensis is currently unknown. Similarly, there is little known about virulence factors present in K. negevensis and how they compare to virulence factors in K. kingae. Using a variety of approaches, we show that K. negevensis produces many of the same putative virulence factors that are present in K. kingae, including a polysaccharide capsule, a secreted exopolysaccharide, a Knh-like trimeric autotransporter, and type IV pili, suggesting that K. negevensis may have significant pathogenic potential.