Project description:To verify the imapct of DSF and C23 on P. aeruginosa during infection We used microarray to compare the effects of adding either DSF alone or DSF with C23 on P. aeruginosa gene expression during mouse lung infection relative to the gene expression of P. aeruginosa in the mouse lung with no compound.
Project description:BACKGROUND: Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. PRINCIPAL FINDINGS: Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4-20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23(T) but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23(T) carries two ?6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. CONCLUSIONS: Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species.
Project description:BACKGROUND:Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. RESULTS:Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. CONCLUSIONS:Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.