Project description:Mycobacterium abscessus [M. abscessus (sensu lato) or M. abscessus group] comprises three closely related taxa with taxonomic status under revision: M. abscessus sensu stricto, M. bolletii and M. massiliense. We describe here a simple, robust and cost effective PCR-based method for distinguishing among M. abscessus, M. massiliense and bolletii. Based on the M. abscessus ATCC 19977T genome, discriminatory regions were identified between M. abscessus and M. massiliense from array-based comparative genomic hybridization. A typing scheme using PCR primers designed for four of these locations was applied to 46 well-characterized clinical isolates comprising 29 M. abscessus, 15 M. massiliense and 2 M. bolletii previously identified by multi-target sequencing. Interestingly, 2 isolates unequivocally identified as M. massiliense were shown to have a full length erm(41) instead of the expected gene deletion and showed inducible clarithromycin resistance after 14 days. We propose using this PCR-based typing scheme combined with erm(41) PCR for a straightforward identification of M. abscessus, M. massiliense and M. bolletii and assessment of inducible clarithromycin resistance. This method can be easily implemented into a routine workflow providing subspecies level identification within 24 hours of isolation of M. abscessus group.
Project description:Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii
| PRJEB12082 | ENA
Project description:Development and Evaluating a core genome multilocus sequence typing (cgMLST) scheme for whole-genome sequence-based typing of Clostridioides difficile
| PRJNA704542 | ENA
Project description:Typing of Klebsiella species by FTIR and MALDI-TOF