Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Thus, the systemic effects of small differences in the oral microbiota are unclear. In this study, we explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects by analyzing the hepatic gene expression and serum metabolomic profiles. The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Samples were collected five weeks after administration. Gut microbial communities were analyzed by 16S ribosomal RNA gene sequencing. Hepatic gene expression profiles were analyzed using a DNA microarray and quantitative polymerase chain reaction. Serum metabolites were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The gut microbial composition at the genus level was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of Neat1, Mt1, Mt2, and Spindlin1, which are involved in lipid and glucose metabolism. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with Bifidobacterium, Atomobium, Campylobacter, and Haemophilus, which are characteristic taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:The aim of this project was to explore the role of gut microbiota in the development of small intestine. The gut microbiota from different groups was used to treat the mice for 1 or 2 weeks. Then the small intestine samples were collected. The RNA was used for the RNA-seq analysis to search the role of gut microbiota in the development of small intestine. Groups: IMA100 mean gut microbiota from Alginate oligosaccharide 100mg/kg treated mice; IMA10 mean gut microbiota from Alginate oligosaccharide 10mg/kg treated mice; IMC mean gut microbiota from control group mice (dosed with water); Sa mean dosed with saline (no gut microbiota). "1" mean dosed for 1 week, "2" means dosed for 2 weeks.
Project description:Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has been recently reported to impact hematopoiesis. However, there is currently no empirical evidence elucidating the direct impact of gut microbiome on aging hematopoiesis. To assess these potential effects, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed an increment in both the absolute number and the engraftment ability of HSCs. Single cell RNA sequencing depicted overall transcriptional changes of HSCs as well as the bone marrow microenvironment and indicated that gut microbiota from young mice enhanced cell cycle activity of HSCs, attenuated canonical inflammatory signals and mitigated inflammation-associated phenotypes in aging hematopoiesis. Integrated microbiome-metabolome analysis uncovered that FMT reshaped gut microbiota construction and metabolite landscape, while the administration of Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our results highlighted the paramount importance of the gut microbiota in HSC aging and provided a strong rationale to limit hematopoietic exhaustion and treat hematologic disorders.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:Advanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study gut microbiota from young or old conventional mice was transferred to young germ-free mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyer’s patches, and mesenteric lymph nodes from conventionalized germ-free mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here we show by transferring aged microbiota to young germ-free mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the germ-free mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young germ-free mice.
Project description:Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific-pathogen free (SPF) non-obese diabetic (NOD) mice females have 1.3-4.4 times higher incidence of Type 1 diabetes (T1D). Germ-free (GF) mice lose the gender bias (female/male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some but not all lineages overrepresented in male mice supported a gender bias in T1D, and protection did not correlate with androgen levels. However, hormone-supported selective microbial lineage variation may work as a positive feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene expression analysis suggested pathways involved in protection of males from T1D by microbiota. We compared gene expression patterns in the pancreatic lymph nodes (PLNs) between four groups of mice (two genders in SPF and GF conditions, respectively). PLNs were isolated from 9-10 week old GF and SPF male and female NOD mice with 3 mice in each group, for a total of 12 samples.
Project description:Antibiotics have long-lasting consequences on the gut microbiota with the potential to impact host physiology and health. However, little is known about the transgenerational impact of an antibiotic-perturbed microbiota. Here we demonstrated that adult pregnant female mice inoculated with a gut microbial community shaped by antibiotic exposure passed on their dysbiotic microbiota to their offspring. This dysbiotic microbiota remained distinct from controls for at least 5 months in the offspring without any continued exposure to antibiotics. By using IL-10 deficient mice, which are genetically susceptible to colitis, we showed mice that received an antibiotic-perturbed gut microbiota from their mothers had increased risk of colitis. Taken together, our findings indicate that the consequences of antibiotic exposure affecting the gut microbiota can extend to a second generation.