Project description:The intramuscular fat (IMF) content of different beef cattle breeds varies greatly, which plays an important role in taste and nutritional value. However, the molecular mechanism of fat metabolism and deposition in beef cattle is still not very clear. In this study, the meat quality traits of Angus cattle and Chinese Simmental cattle were compared, the transcriptome of the longissimus dorsi muscle (LD) between Angus cattle and Chinese Simmental cattle was then analyzed to identify key genes related to fat metabolism and adipogenesis by high-throughput RNA-seq technology. In the current study conducted a comprehensive analysis on the transcriptome of the longissimus dorsi muscle (LD) of Angus and Simmental cattle, and identified differentially expressed genes related to lipid metabolism,which may have a great impact on on the formation of IMF.
Project description:Cattle plays an important role in providing essential nutrients through meat production. Thus, we focused on epigenetic factors associated with meat yield. To investigating circulating miRNAs that are involved with meat yield and connect biofluids and longissimus dorsi (LD) muscle in Korean cattle, we performed analyses of the carcass characteristics, miRNA array, qPCR, and bioinformatics. Carcass characteristics relative to the yield grade (YG) showed that the yield index and rib eye area were the highest, whereas the backfat thickness was the lowest for YG A (equal to high yield grade) cattle among the three YGs. miRNA array sorted the circulating miRNAs that connect biofluids and LD muscle. miRNA qPCR showed that miR-15a (r = 0.84), miR-26b (r = 0.91), and miR-29c (r = 0.92) had positive relationships with biofluids and LD muscle. In YG A cattle, miR-26b was considered to be a circulating miRNA connecting biofluids and LD muscle because the target genes of miR-26b was more involved with myogenesis. Then, miR-26b targeted genes, DIAPH3 and YOD1 were downregulated in YG A cattle. Our results suggest that miR-15a, miR-26b, and miR-29c are upregulated in biofluids and LD muscle whereas, downregulation of DIAPH3 and YOD1 in the LD muscle of finishing cattle steers.
Project description:Tenderness is one of the most important properties of meat quality, which is influenced by genetic and environmental factors. As an intensively studied epigenetic marker, histone methylation, occurring on arginine and lysine residues, has pivotal regulatory functions on gene expression. To examine whether histone methylation involves in beef tenderness variation, we analyzed the transcriptome and H3K4me3 enrichment profiles of muscle strips obtained from the longissimus dorsi (LD) of Angus steers previously classify to the tender or tough group. We first plotted a global bovine H3K4me3 map on chromosomes and called peak-enriched regions and genes. We found that majorities of H3K4me3 on genes were occupying the first intron and intergenic regions and its maps displayed similar patterns in tender and tough groups, with high H3K4me3 enrichment surrounding the transcription start site (TSS). We also explored the relationship of H3K4me3 and gene expression. The results showed that H3K4me3 enrichment is highly positively correlated with gene expression across the whole genome. Cluster analysis results confirmed the relationship of H3K4me3 enrichment and gene expression. By using a pathway-based approach in genes with H3K4me3 enrichment in promoter regions from the tender cluster, we revealed that those genes involved in the development of different tissues–connective tissue, skeletal and muscular system and functional tissues–; while in tough group those genes engaged in cell death, lipid metabolism and small molecule biochemistry. The results from this study provide a deep insight into understanding of the mechanisms of epigenetic regulations in meat quality and beef tenderness. Nineteen purebred Angus steers were obtained from the Wye Farm. At approximately 12 months of age, the animals were serially harvested. Immediately after harvest, samples of longissimus dorsi (LD) from the right side of the carcass were obtained and placed in RNAlater solution at -80°C. The carcass were stored at 4°C for a total of 14 days. After this period, steaks were obtained from the LD at the level of the 12th intercostal space and then frozen. For measurement of the WBSF, steaks were thawed at room temperature to an internal temperature of 4°C. Then, the steaks were cooked to a core temperature of 70°C using a George Foreman Lean Mean Fat Grilling Machine. The cooked steaks were then cooled down to room temperature. Using a sharp cylinder, especially designed for muscle, six cores (1.27 cm in diameter) were sampled parallel to the muscle fiber orientation. The Warner-Bratzler shear forces (WBSF) of the cores were obtained. The average WBSF of the six cores was calculated and used as the WBSF for the samples. From these 19 steers, 4 with the lowest WBSF values (6.77±0.56 kg) were identified as tender and 5 samples with the largest WBSF values (19.93±0.39 kg) labeled as tough. Then both groups underwent further analysis..
Project description:MicroRNAs (miRNAs) regulate gene expression. The aim of this study was to identify circulating miRNAs that are involved with meat yield and connect exosomes and longissimus dorsi (LD) muscle in Korean cattle steer. Thus, we performed analyses of the carcass characteristics, exosome extraction, bovine miRNA array, mature miRNA qPCR, bioinformatics, and qPCR. Our analysis of the carcass characteristics relative to the yield grade (YG) showed that the yield index (YI) and rib eye area were the highest, whereas the backfat thickness was the lowest for YG A cattle among the three YGs. We performed a miRNA microarray and a Venn diagram analysis to sort the circulating miRNAs that connect exosomes and LD muscle. Mature miRNA qPCR showed that miR-15a (r = 0.84), miR-26b (r = 0.91), and miR-29c (r = 0.92) had positive relationships with exosomes and LD muscle. In YG A cattle, miR-26b was considered to be a circulating miRNA connecting exosomes and LD muscle because the expression pattern of miR-26b was similar in the microarray and miRNA qPCR for miR-26b-targeted genes, where the expression levels of DIAPH3 and YOD1 were lower than those in YG C cattle. Our results suggest that circulating miR-26b may participate in cell maintenance by regulating DIAPH3 and YOD1 in the LD muscle of Korean cattle. 29 or 30 month Korean cattle steers were classified by yield grade(YG) A, B, and C. miRNA expression patterns for exosome and LD muscle were compared among YGs.
Project description:Transcripome of longissimus dorsi muscle was compared between Korean cattle bulls and steers by using a customized bovine Combimatrix microarray containing 10,199 genes. A customized bovine Combimatrix microarray containing 10,199 genes were constructed, and transcripome of longissimus dorsi muscle was compared between Korean cattle bulls (3 bulls) and steers (3 high-marbled and 3 low-marbled steers) by using the microarray hybridzation.
Project description:The transcriptome of 189 samples across four tissues from 48 beef steers with varied feed efficiency were generated using Illumina HiSeq4000
Project description:The biological mechanisms associated with the residual feed intake in ruminants have been harnessed immensely via transcriptome analysis of liver and ruminal epithelium, however, this concept has not been fully explored using whole blood. We applied whole blood transcriptome analysis and gene set enrichment analysis to identify key pathways associated with divergent selection for low or high RFI in beef cattle. A group of 56 crossbred beef steers (average BW = 261.3 ± 18.5 kg) were adapted to a high-forage total mixed ration in a confinement dry lot equipped with GrowSafe intake nodes for period of 49 d to determine their residual feed intake (RFI). After RFI determination, weekly whole blood samples were collected three times from beef steers with the lowest RFI (most efficient; low-RFI; n = 8) and highest RFI (least efficient; high-RFI; n = 8). Prior to RNA extraction, whole blood samples collected were composited for each steer. Sequencing was performed on an Illumina NextSeq2000 equipped with a P3 flow. Gene set enrichment analysis (GSEA) was used to analyze differentially expressed gene sets and pathways between the two groups of steers. Results of GSEA revealed pathways associated with metabolism of proteins, cellular responses to external stimuli, stress, and heat stress were differentially inhibited (false discovery rate (FDR) < 0.05) in high-RFI compared to low-RFI beef cattle, while pathways associated with binding and uptake of ligands by scavenger receptors, scavenging of heme from plasma, and erythrocytes release/take up oxygen were differentially enriched (FDR < 0.05) in high-RFI, relative to low-RFI beef cattle. Taken together, our results revealed that beef steers divergently selected for low or high RFI revealed differential expressions of genes related to protein metabolism and stress responsiveness.