Project description:Based our serial analysis of gene expression (SAGE) data from an elite Chinese super-hybrid rice (LYP9) and its parental cultivars (93-11 and PA64s) in three major tissue types at three different developmental stages, we obtained a much more comprehensive view of genes that related to rice heterosis and analyzed the potential effects of gene-expression difference on the heterosis of rice.These heterotic expression genes among different genotypes provided new avenues for exploring the molecular mechanisms underlying heterosis, including variable gene expression patterns. Keywords: Heterosis study by SAGE
Project description:Based our serial analysis of gene expression (SAGE) data from an elite Chinese super-hybrid rice (LYP9) and its parental cultivars (93-11 and PA64s) in three major tissue types at three different developmental stages, we obtained a much more comprehensive view of genes that related to rice heterosis and analyzed the potential effects of gene-expression difference on the heterosis of rice.These heterotic expression genes among different genotypes provided new avenues for exploring the molecular mechanisms underlying heterosis, including variable gene expression patterns. Keywords: Heterosis study by SAGE We constructed nine SAGE libraries parallelly, including root at the first tillering stage, leaf at the milky stage of rice grain maturation, and panicle at the pollen-maturing stage of hybrid rice (LYP9) and its paternal lines (9311, PA64s).
Project description:The publicly available genome sequence information of two rice strains, japonica cultivar Nipponbare and indica cultivar 93-11, opens a great opportunity for investigation of performances DNA genotyping by high-density oligonucleotide arrays. Here, we compare single feature polymorphism (SFP) detection performances between whole genome hybridization and transcript hybridization using Affymetrix Rice Expression Array and the two rice cultivars.
Project description:Despite the fact that taro, colocasia esculenta, is an important staple food for millions of people around the world, its genome and transcriptome sequence has not yet been investigated. The objective of this study was to generate transcriptome sequence information from taro cultivars Niue, Palau 10, and Sam-07. Niue and Sam-07 are highly susceptible to the taro leaf blight (TLB) disease caused by Phytophthora colocasiae, to which Palau 10 is resistant. The analysis of the taro transcriptome will facilitate gene discovery, including genes that are responsible for TLB-resistance. Moreover, microsatellites (SSRs) developped from these data will be useful for marker-assisted breeding of improved taro cultivars, QTL mapping, and characterization of the genetic diversity in taro.
Project description:The genome structrure of domesticated species is influenced by complexity of breeding practices exercised by humans. Hokkaido is the northern-most regio of Japan, and one of northern limit of rice cultivation of world. The climatic conditions of Hokkaido are considered to be unsuitable for rice cultivation. Rice breeding programs of Hokkaido have focused on adaptability to specific local environmental condiitons (such as short growth period, low temperature conditions). These specific selection pressures have generated the unique genetic structures of Hokkaido rice cultivars. The genotype of sixty-three Hokkaido rice varieties were already analyzed by SSR marker, and the results showed that Hokkaido rice varieties were classified into six groups (Shinada et al, 2014). The unique genomic structures of six groups may have related to specific gene expression. This study analyze the gene expression profiles of Hokkaido rice variety.
Project description:To identify peanut Aspergillus-interactive and Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project followed by a peanut microarray study. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. Microarray analysis identified 65 and 1 genes in resistant (C20) and susceptible (TF) cultivars, respectively, that were up-regulated in response to Aspergillus infection. In addition we identified 40 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes previously shown to confer resistance to fungal infection. These results provide a comprehensive genome-scale platform for future studies focused on developing Aspergillus-resistant peanut cultivars through conventional breeding, marker-assisted breeding, or biotechnological methods by gene manipulation.
Project description:In order to evaluate the genome differences and find the more tolerant cultivar, first eleven Malaysian rice cultivars namely, MR219, MR276, MR220, MR211, MR219-4, MR253, Q50, Q74, MR159, Masuri and MR263 were subjected under water deficit. Then, based on the morphological and physiological traits, the more drought-tolerant and -susceptible cultivars were screened and time-course gene expression profiling established by a comprehensive transcriptome database sequencing of the leaf RNA of tolerant rice. The current investigation provides pivotal data for understanding the rice drought tolerance mechanisms.
Project description:In this study, we aim to generate genome-scale DNA methylation profiles at single-base resolution in different rice cultivars (IR64, Nagina 22 and Pokkali) under control and stress conditions. Using high-throughput whole genome bisulfite Sequencing, we generated DNA methylation maps covering the vast majority of cytosines in the rice genome. More than 152 million high quality reads were obtained for each tissue sample using Illumina platform. We discovered extensive DNA methylation in rice cultivars, identified the context and level of methylation at each site.Numerous differentially methylated regions (DMRs) among different cultivars under control and stress conditions were identified and many of them were associated with differential gene expression. The high resolution methylome maps of different rice genotypes and differentially methylated regions will serve as reference for understanding the epigenetic regulation of stress responses in plants. Whole genome bisulfite sequencing of seven control/stressed samples from three rice cultivars (IR64, N22 and Pokkali)