Project description:A technical comparison of Agilent SureSelect Focussed Exome and TruSight One Mendeliome sequencing kits, by triplicate sequencing of the cell line DNA of NA12878, NA12891, NA12892 and NIST RM8395
Project description:This SuperSeries is composed of the following subset Series: GSE23120: Basal gene expression data from Human Variation Panel GSE24245: Genome-wide SNP array data from Human Variation Panel by Illumina 510S GSE24260: Genome-wide SNP array data from Human Variation Panel by Illumina 550K GSE24274: Genome-wide SNP array data from Human Variation Panel by Illumina 650K Refer to individual Series
Project description:Heredity is a major risk factor for ovarian cancer, but many families escape detection. Refined diagnosis of ovarian cancers linked to the breast and ovarian cancer (HBOC) syndrome and the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome would allow cancer prevention in high risk families. In order to delineate genetic profiles of hereditary ovarian cancer, we applied genome wide array comparative genomic hybridization to 24 sporadic tumors, 12 HBOC associated tumors (BRCA1 mutations) and eight HNPCC associated tumors (mismatch repair gene mutations). Unsupervised cluster analysis identified two distinctive clusters related to genetic complexity. Most sporadic and HBOC associated tumors had complex genetic profiles with multiple gains and losses with an average of 41% of the genome altered, whereas mismatch repair defective tumors had stable genetic profiles, with an average of 18% of the genome altered. Losses of 4q34, 13q12-q32 and 19p13 were overrepresented in the HBOC subset, gains of chromosomes 17 and 19 characterized the HNPCC tumors and gains of 20q11 were more common in the sporadic tumors. The genetic distinction between HBOC and HNPCC associated ovarian cancer suggests that genetic profiles can be applied for refined classification of hereditary cases and reflects tumor development along different genetic pathways.