Project description:The purpose of this experiment was to study the effects of the bacterial enzyme ACC deaminase on the transcriptional changes within canola seedlings. Seedlings from seeds treated with the plant growth-promoting bacteria Pseudomonas putida UW4 which expresses a high level of ACC deaminase and its ACC deaminase-minus mutant were compared to untreated seedlings along with a transgenic line of canola expressing the ACC deaminase enzyme in the roots. ACC deaminase breaks down 1-aminocyclopropane-1-carboxylic acid, the biosynthetic precursor to the plant hormone ethylene, lowering ethylene levels and improving plant fitness. Plants treated with the ACC deaminase-containing bacteria and transgenic plants expressing ACC deaminase are more tolerant to a variet of stresses and this expression study helps to illuminate the pathways responsible for the growth promotion provided by the beneficial bacteria and the role of the enzyme itself.
Project description:Canola plants inoculated with plant growth-promoting bacteria either expressing ACC deaminase or not to determine the effect on plant gene expression using an Arabidopsis microarray.
Project description:Canola plants inoculated with plant growth-promoting bacteria either expressing ACC deaminase or not to determine the effect on plant gene expression using an Arabidopsis microarray. 3 replicates for each ACD+ and ACD- bacteria, each compared with untreated control.
Project description:The purpose of this experiment was to study the effects of a bacterial ACC deaminase transgene in the roots and its impact on nickel tolerance of canola. ACC deaminase breaks down 1-aminocyclopropane-1-carboxylic acid, the biosynthetic precursor to the plant hormone ethylene, lowering ethylene levels and improving plant tolerance to stress. Ethylene evolved during plant stress is thought to causes senescence and cell death and worsen stress symptoms. Transgenic plants expressing ACC deaminase from the plant growth-promoting bacteria Pseudomonas putida UW4 are more tolerant to heavy metals in the soil and this expression study helps to illuminate the pathways responsible for this tolerance.
Project description:The data presented here are related to the proteins detected in rice plants inoculated with ACC deaminase producing Methylobacterium oryzae CBMB20 and imposed with salt stress.
Project description:A starting natural community of AccD genes, and a wild-type AccD gene was cloned and altered. Each were used in an artificial selection assay and sequenced via a 454 GS FLX Titanium system.
Project description:In this study, we set out to reprogram deaminase context specificity to pinpoint editing. We identified multiple nucleic acid-recognition hotspots in the E. coli tRNA-specific adenosine deaminase (TadA). Strategically sampling these recognition hotspots, we first accessed multipotency for C in TadA and subsequently eliminate its A-deamination activity. We further reprogrammed TadAC context specificity through 16 evolution campaigns, each aimed at a defined NCN context, and isolated hundreds of thousands of context-specific cytosine deaminases. Our panel of 16 NCN-specific deaminases covers the full spectrum of all possible minus1 and plus 1 contexts for a target C, offering on demand deaminase choices for editor customization. Our context-specific CBEs corrected 5,866 of 7,196 disease-associated T:A-to-C:G transitions documented by ClinVar with higher accuracy than existing CBEs, often achieving selective editing of a single cytosine out of multiple cytosines in the protospacer without compromising editing potency. We also showcased the application of context-specific base editing for modeling disease-associated C:G-to-T:A transitions using two cancer driver mutations, KRASG12D and TP53R248Q, each demanding selective editing of one cytosine in two consecutive cytosines (ACC and CCG). These context-specific editors, as expected, showed tightly controlled off-target profiles by rejecting most cytosines at potential off-target sites. Bystander-free, single-nucleobase editing, as enabled by reprogramming deaminase context specificity, complements our current editor portfolio and unlocks new potential in base editing.
Project description:BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Acetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step of de novo lipogenesis and regulates fatty-acid beta-oxidation in hepatocytes. ACC inhibition reduces hepatic fat content and markers of liver injury in NASH patients; however, the effect of ACC inhibition on liver fibrosis has not been reported. METHODS: A direct role for ACC in fibrosis was evaluated by measuring de novo lipogenesis, procollagen production, gene expression, glycolysis, and mitochondrial respiration in hepatic stellate cells (HSCs) in the absence or presence of small-molecule inhibitors of ACC. ACC inhibitors were evaluated in rodent models of liver fibrosis induced by diet or the hepatotoxin, DEN. Fibrosis and hepatic steatosis were evaluated by histological and biochemical assessments. RESULTS: In TGF-beta-stimulated HSCs, ACC inhibition reduced activation and collagen production independent of mitochondrial beta-oxidation by blocking de novo lipogenesis. ACC inhibition prevented a metabolic switch necessary for induction of glycolysis and oxidative phosphorylation during HSC activation. Consistent with this direct anti-fibrotic mechanism in HSCs, ACC inhibition reduced liver fibrosis in a rat CDHFD model and in response to chronic DEN-induced liver injury that lacked hepatic lipid accumulation. CONCLUSIONS: In addition to reducing lipid accumulation in hepatocytes, ACC inhibition also directly impairs the pro-fibrogenic activity of HSCs. Small molecule inhibitors of ACC may reduce liver fibrosis by both reducing lipotoxicity in hepatocytes and directly reducing HSC activation, providing a mechanistic rationale for the treatment of patients with advanced liver fibrosis due to NASH.
Project description:Interventions: Blood samples(10 points) are collected after the first administration of capecitabine for pharmacokinetic analysis and cytidine deaminase activity measurement.
Primary outcome(s): To evaluate the correlation AUC of 5-DFUR/AUC of 5-DFCR ratio and cytidine deaminase activity.
Study Design: Single arm Non-randomized