Project description:The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling more detailed genomic studies in this species.
Project description:Introduction:Avian poxvirus infections are widespread in the domestic poultry population but are also reported in wild birds. In poultry, these infections cause significant economic losses, while wild birds may be a reservoir for poxvirus which affects breeding poultry. However, wild birds may also exhibit characteristic anatomopathological changes. This study concerns the infection of wild-living great tits (Parus major) with the avian poxvirus in Poland. Material and Methods:Samples of internal organs and skin collected from great tits were homogenised and total cellular DNA was isolated. In PCR, the primers complementary to gene encoding the core protein 4b of the HP44 strain of fowl poxvirus (FPV) were used. Results:After electrophoresis in 2% agarose gel, the PCR product of 578 bp characteristic for FPV was obtained in DNA samples isolated from skin lesions and the heart. The analysis of the nucleotide sequence of the virus strain showed 99% similarity to many poxviruses previously isolated from great tits and other free birds at various sites in the world. Conclusions:This paper is the first clinically documented evidence obtained in laboratory conditions of avian poxvirus cases in great tits in Poland.
Project description:Urban environments are expanding rapidly, and with urbanization come both challenges and opportunities for wildlife. Challenges include combating the anthropogenic disturbances such as light, noise and air pollution and lower availability of natural food sources. The benefits are many, including the availability of anthropogenic food sources, breeding boxes and warmer temperatures. Thus, depending on the context, urbanization can have both positive and negative effects on fitness related traits. It is well known that early-life conditions can have lifelong implications on fitness; little is however known about development in urban environments. We reciprocally cross-fostered urban and rural nestling great tits (Parus major L.) to study how growing up in an urban versus rural habitat affected telomere length (TL)-a suggested biomarker of longevity. We show, for the first time, that growing up in an urban environment significantly shortens TL, independently of natal origin (i.e. urban or rural). This implies that the urban environment imposes a challenge to developing birds, with potentially irreversible effects on lifespan.
Project description:Alternative ways to control caterpillar pests and reduce the use of pesticides in apple orchards are in the interest of the environment, farmers and the public. Great tits have already been shown to reduce damage under high caterpillar density when breeding in nest boxes in an experimental apple orchard. We tested whether this reduction also occurs under practical conditions of Integrated Pest Management (IPM), as well as Organic Farming (OF), by setting up an area with nest boxes while leaving a comparable area as a control within 12 commercial orchards. We showed that in IPM orchards, but not in OF orchards, in the areas with breeding great tits, apples had 50% of the caterpillar damage of the control areas. Offering nest boxes to attract insectivorous passerines in orchards can thus lead to more limited pesticide use, thereby adding to the natural biological diversity in an agricultural landscape, while also being economically profitable to the fruit growers.
Project description:The great tit complex is divided into four groups, each containing several subspecies. Even though the groups are known to differ markedly on morphological, vocal and behavioural characters, some hybridization occurs in the regions where they meet. The great tit has often been referred to as an example of a ring species, although this has later been questioned. Here, we have studied the genetic structure and phylogenetic relationships of the subspecies groups to clarify the evolutionary history of the complex using control region sequences of the mitochondrial DNA. The subspecies groups were found to be monophyletic and clearly distinct in mitochondrial haplotypes, and therefore must have had long-independent evolutionary histories. This conflicts with the ring species assignment and supports the formation of secondary contact zones of previously temporarily isolated groups. According to the phylogenetic species concept, all the subspecies groups could be considered as separate species, but if the definition of the biological species concept is followed, none of the subspecies groups is a true species because hybridization still occurs.
Project description:Sex chromosomes contribute substantially to key evolutionary processes such as speciation and adaptation. Several theories suggest that evolution could occur more rapidly on sex chromosomes, but currently our understanding of whether and how this occurs is limited. Here, we present an analysis of the great tit (Parus major) genome, aiming to detect signals of faster-Z evolution. We find mixed evidence of faster divergence on the Z chromosome than autosomes, with significantly higher divergence being found in ancestral repeats, but not at 4- or 0-fold degenerate sites. Interestingly, some 4-fold sites appear to be selectively constrained, which may mislead analyses that use these sites as the neutral reference (e.g., dN/dS). Consistent with other studies in birds, the mutation rate is significantly higher in males than females, and the long-term Z-to-autosome effective population size ratio is only 0.5, significantly lower than the expected value of 0.75. These are indicative of male-driven evolution and high variance in male reproductive success, respectively. We find no evidence for an increased efficacy of positive selection on the Z chromosome. In contrast, the Z chromosome in great tits appears to be affected by increased genetic drift, which has led to detectable signals of weakened intensity of purifying selection. These results provide further evidence that the Z chromosome often has a low effective population size, and that this has important consequences for its evolution. They also highlight the importance of considering multiple factors that can affect the rate of evolution and effective population sizes of sex chromosomes.
Project description:BackgroundGut microbial communities play important roles in nutrient management and can change in response to host diets. The extent of this flexibility and the concomitant resilience is largely unknown in wild animals. To untangle the dynamics of avian-gut microbiome symbiosis associated with diet changes, we exposed Parus major (Great tits) fed with a standard diet (seeds and mealworms) to either a mixed (seeds, mealworms and fruits), a seed, or a mealworm diet for 4 weeks, and examined the flexibility of gut microbiomes to these compositionally different diets. To assess microbiome resilience (recovery potential), all individuals were subsequently reversed to a standard diet for another 4 weeks. Cloacal microbiomes were collected weekly and characterised through sequencing the v4 region of the 16S rRNA gene using Illumina MiSeq.ResultsInitial microbiomes changed significantly with the diet manipulation, but the communities did not differ significantly between the three diet groups (mixed, seed and mealworm), despite multiple diet-specific changes in certain bacterial genera. Reverting birds to the standard diet led only to a partial recovery in gut community compositions. The majority of the bacterial taxa that increased significantly during diet manipulation decreased in relative abundance after reversion to the standard diet; however, bacterial taxa that decreased during the manipulation rarely increased after diet reversal CONCLUSIONS: The gut microbial response and partial resilience to dietary changes support that gut bacterial communities of P. major play a role in accommodating dietary changes experienced by wild avian hosts. This may be a contributing factor to the relaxed association between microbiome composition and the bird phylogeny. Our findings further imply that interpretations of wild bird gut microbiome analyses from single-time point sampling, especially for omnivorous species or species with seasonally changing diets, should be done with caution. The partial community recovery implies that ecologically relevant diet changes (e.g., seasonality and migration) open up gut niches that may be filled by previously abundant microbes or replaced by different symbiont lineages, which has important implications for the integrity and specificity of long-term avian-symbiont associations.