Project description:The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling more detailed genomic studies in this species.
Project description:Alternative ways to control caterpillar pests and reduce the use of pesticides in apple orchards are in the interest of the environment, farmers and the public. Great tits have already been shown to reduce damage under high caterpillar density when breeding in nest boxes in an experimental apple orchard. We tested whether this reduction also occurs under practical conditions of Integrated Pest Management (IPM), as well as Organic Farming (OF), by setting up an area with nest boxes while leaving a comparable area as a control within 12 commercial orchards. We showed that in IPM orchards, but not in OF orchards, in the areas with breeding great tits, apples had 50% of the caterpillar damage of the control areas. Offering nest boxes to attract insectivorous passerines in orchards can thus lead to more limited pesticide use, thereby adding to the natural biological diversity in an agricultural landscape, while also being economically profitable to the fruit growers.
Project description:The great tit complex is divided into four groups, each containing several subspecies. Even though the groups are known to differ markedly on morphological, vocal and behavioural characters, some hybridization occurs in the regions where they meet. The great tit has often been referred to as an example of a ring species, although this has later been questioned. Here, we have studied the genetic structure and phylogenetic relationships of the subspecies groups to clarify the evolutionary history of the complex using control region sequences of the mitochondrial DNA. The subspecies groups were found to be monophyletic and clearly distinct in mitochondrial haplotypes, and therefore must have had long-independent evolutionary histories. This conflicts with the ring species assignment and supports the formation of secondary contact zones of previously temporarily isolated groups. According to the phylogenetic species concept, all the subspecies groups could be considered as separate species, but if the definition of the biological species concept is followed, none of the subspecies groups is a true species because hybridization still occurs.
Project description:Urban environments are expanding rapidly, and with urbanization come both challenges and opportunities for wildlife. Challenges include combating the anthropogenic disturbances such as light, noise and air pollution and lower availability of natural food sources. The benefits are many, including the availability of anthropogenic food sources, breeding boxes and warmer temperatures. Thus, depending on the context, urbanization can have both positive and negative effects on fitness related traits. It is well known that early-life conditions can have lifelong implications on fitness; little is however known about development in urban environments. We reciprocally cross-fostered urban and rural nestling great tits (Parus major L.) to study how growing up in an urban versus rural habitat affected telomere length (TL)-a suggested biomarker of longevity. We show, for the first time, that growing up in an urban environment significantly shortens TL, independently of natal origin (i.e. urban or rural). This implies that the urban environment imposes a challenge to developing birds, with potentially irreversible effects on lifespan.
Project description:IntroductionAvian poxvirus infections are widespread in the domestic poultry population but are also reported in wild birds. In poultry, these infections cause significant economic losses, while wild birds may be a reservoir for poxvirus which affects breeding poultry. However, wild birds may also exhibit characteristic anatomopathological changes. This study concerns the infection of wild-living great tits (Parus major) with the avian poxvirus in Poland.Material and methodsSamples of internal organs and skin collected from great tits were homogenised and total cellular DNA was isolated. In PCR, the primers complementary to gene encoding the core protein 4b of the HP44 strain of fowl poxvirus (FPV) were used.ResultsAfter electrophoresis in 2% agarose gel, the PCR product of 578 bp characteristic for FPV was obtained in DNA samples isolated from skin lesions and the heart. The analysis of the nucleotide sequence of the virus strain showed 99% similarity to many poxviruses previously isolated from great tits and other free birds at various sites in the world.ConclusionsThis paper is the first clinically documented evidence obtained in laboratory conditions of avian poxvirus cases in great tits in Poland.
Project description:Sex chromosomes contribute substantially to key evolutionary processes such as speciation and adaptation. Several theories suggest that evolution could occur more rapidly on sex chromosomes, but currently our understanding of whether and how this occurs is limited. Here, we present an analysis of the great tit (Parus major) genome, aiming to detect signals of faster-Z evolution. We find mixed evidence of faster divergence on the Z chromosome than autosomes, with significantly higher divergence being found in ancestral repeats, but not at 4- or 0-fold degenerate sites. Interestingly, some 4-fold sites appear to be selectively constrained, which may mislead analyses that use these sites as the neutral reference (e.g., dN/dS). Consistent with other studies in birds, the mutation rate is significantly higher in males than females, and the long-term Z-to-autosome effective population size ratio is only 0.5, significantly lower than the expected value of 0.75. These are indicative of male-driven evolution and high variance in male reproductive success, respectively. We find no evidence for an increased efficacy of positive selection on the Z chromosome. In contrast, the Z chromosome in great tits appears to be affected by increased genetic drift, which has led to detectable signals of weakened intensity of purifying selection. These results provide further evidence that the Z chromosome often has a low effective population size, and that this has important consequences for its evolution. They also highlight the importance of considering multiple factors that can affect the rate of evolution and effective population sizes of sex chromosomes.
Project description:Sociality impacts many biological processes and can be tightly linked to an individual's fitness. To maximize the advantages of group living, many social animals prefer to associate with individuals that provide the most benefits, such as kin, familiar individuals, or those of similar phenotypes. Such social strategies are not necessarily stable over time but can vary with changing selection pressures. In particular, young individuals transitioning to independence should continuously adjust their social behavior in light of developmental changes. However, social strategies exhibited during adolescence in animals are understudied, and the factors underlying social network formation during ontogeny remain elusive. Here, we tracked associations of wild great tits (Parus major) during the transition to independence and across their first year of life. Both spatial and social factors predicted dyadic associations. During the transition to independence in spring, fledglings initially preferred to associate with siblings and peers over non-parent adults. We found no evidence for preferred associations among juveniles of similar age or fledge weight during that time but weak evidence for some potential inheritance of the parental social network. By autumn, after juveniles had reached full independence, they exhibited social strategies similar to those of adults by establishing stable social ties based on familiarity that persisted through winter into the next spring. Overall, this research demonstrates dynamic changes in social networks during ontogeny in a species with a fast life history and limited parental care, which likely reflect changes in selective pressures. It further highlights the importance of long-term social bonds based on familiarity in this species.