Project description:Total RNA was extracted from wild-type and FUS -/- mouse E18 brain samples using RNeasy kit, cDNA was synthesized using GeneChip WT cDNA Synthesis and Amplification kit (Affymetrix 900673) and hybridised to Affymetrix mouse high-resolution AltSplice microarrays.
Project description:In the present study, we performed HITS-CLIP analysis for FUS using mouse brain to extensively characterize tits RNA-binding sites and functional roles in RNA metabolisms. We identified preferential binding of FUS to stem-and-loop structures but without any discernible consensus motifs. FUS was preferentially bound to introns and 3' untranslated regions, but the exon/intron boundaries were mostly devoid of FUS-tags. Analysis of position-dependence of FUS-binding sites in regulating inclusion and skipping of exons disclosed that FUS is bound broadly around the alternatively spliced exons. Among them, however, noticeable CLIP-tags were observed in the downstream introns. We also noticed that FUS occasionally binds to the antisense strands in the promoter regions. Global analysis of CLIP-tags and expression profiles revealed that binding of FUS to the promoter antisense regions downgregulates transcription of the sense strand. HITS-CLIP (High Throughput Sequencing after Crosslinking and Immunoprecipitation) experiments targeting FUS in mouse cerebrums derived from 12-week-old C57BL/6 mice
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:The aim of our study is to identify the role of FUS in shaping the transcriptome. RNA-seq of two FUS KO clones was performed and compared to wt; for each, four replicates were sequenced. RNA molecules associated with the FUS protein were determined by means of a RNA immuno-precipitation, followed by high-throughput sequencing. Total RNA was used as a control. SH-SY5Y cells were used for both experiments. RNA-seq: 4 wt samples, 4 A4 KO samples, 4 A5 KO samples. RIP-seq: 1 input control sample, 3 anti-FUS IP replicates.
Project description:FUS is a primarily nuclear RNA-binding protein with important roles in RNA processing and transport. FUS mutations disrupting its nuclear localization characterize a subset of amyotrophic lateral sclerosis (ALS-FUS) patients, through an unidentified pathological mechanism. FUS regulates nuclear RNA, but its role at the synapse is poorly understood. Here, we used super-resolution imaging to determine the physiological localization of extranuclear, neuronal FUS and found it predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosome preparations, we identified synaptic RNA targets of FUS that are associated with synapse organization and plasticity. Synaptic FUS was significantly increased in a knock-in mouse model of ALS-FUS, at presymptomatic stages. Despite apparently unaltered synaptic organization, RNA-seq of synaptoneurosomes highlighted age-dependent dysregulation of glutamatergic and GABAergic synapses. Our study indicates that FUS relocalization to the synapse in early stages of ALS-FUS results in synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Project description:Mutations in Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival, and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility, and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Project description:In the present study, we performed HITS-CLIP analysis for FUS using mouse brain to extensively characterize tits RNA-binding sites and functional roles in RNA metabolisms. We identified preferential binding of FUS to stem-and-loop structures but without any discernible consensus motifs. FUS was preferentially bound to introns and 3' untranslated regions, but the exon/intron boundaries were mostly devoid of FUS-tags. Analysis of position-dependence of FUS-binding sites in regulating inclusion and skipping of exons disclosed that FUS is bound broadly around the alternatively spliced exons. Among them, however, noticeable CLIP-tags were observed in the downstream introns. We also noticed that FUS occasionally binds to the antisense strands in the promoter regions. Global analysis of CLIP-tags and expression profiles revealed that binding of FUS to the promoter antisense regions downgregulates transcription of the sense strand.
Project description:FUS, an RNA binding protein was recently implicated in Amyotrophic Lateral Sclerosis (ALS). ALS is a fatal neurodegenerative disease. We report the identification of the conserved neuronal RNA targets of FUS and the assessment of the impact of FUS depletion on the neuronal transcriptome. We identified that FUS regulates splicing of conserved intron containing transcripts. FUS retains or excludes the conserved intron by binding to them. Identification of FUS neuronal targets using normal human brain samples and mouse neurons