Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5M-bM-^@M-^Y half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. This SuperSeries is composed of the following subset Series: GSE21781: Mapping origins of replication in Arabidopsis thaliana: Examination of BrdU labelled DNA and unlabelled DNA in one cell type GSE21827: Mapping origins of replication in Arabidopsis thaliana: H3K4ac ChIP vs. unmodified H3 ChIP Refer to individual Series
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5’ half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. This SuperSeries is composed of the SubSeries listed below.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5’ half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H3 and H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. Examination of BrdU labelled DNA and unlabelled DNA in one cell type
Project description:Because of the lack of information, regulation of DNA replication initiation in mammals is still poorly understood. In order to identify general rules, we have mapped replication origins along 1% of the human genome in HeLa cells. We found large gene-poor regions lacking origin and G+C rich regions containing clusters of closely spaced origins. Half of the 283 origins mapped are within or near CpG islands. The connection with gene expression is further reinforced by the observation that most origins overlap with DNAseI hypersensitive sites found at transcriptional regulatory elements. We show, however, that this association is independent of chromatin structure and transcriptional activity. Replication timing analyses coupled to our origin mapping demonstrate that origin dense regions and isolated origins are replicated at every moment in S phase. All together, our data suggest that a relatively strict origin-timing programme regulates DNA replication of the human genome. Keywords: Nascent strands, ENCODE project, HeLAS3 cells, SNS-Chip
Project description:Because of the lack of information, regulation of DNA replication initiation in mammals is still poorly understood. In order to identify general rules, we have mapped replication origins along 1% of the human genome in HeLa cells. We found large gene-poor regions lacking origin and G+C rich regions containing clusters of closely spaced origins. Half of the 283 origins mapped are within or near CpG islands. The connection with gene expression is further reinforced by the observation that most origins overlap with DNAseI hypersensitive sites found at transcriptional regulatory elements. We show, however, that this association is independent of chromatin structure and transcriptional activity. Replication timing analyses coupled to our origin mapping demonstrate that origin dense regions and isolated origins are replicated at every moment in S phase. All together, our data suggest that a relatively strict origin-timing programme regulates DNA replication of the human genome. Keywords: Nascent strands, ENCODE project, HeLAS3 cells, SNS-Chip Four independent preparations of Short Nascent Strands (SNS) were performed. In order to have enough material for microarray hybridisation, we coupled the stringent preparation of SNS with the TLAD method, a technique of linear amplification that can generate several µg of amplified material from 10-20 ng of DNA (Liu et al., 2003).Two were amplified by TLAD (experiments A and B) and hybridized on DNA microarrays, and the other two (experiments C and D) were used for the validation by real-time quantitative PCR (qPCR) of results obtained on micro-arrays. We performed also a gDNA/gDNA hybridization where gDNA are also amplified by TLAD to order to do a control.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5’ half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H3 and H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5M-bM-^@M-^Y half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H3 and H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes. H4K5ac ChIP vs. unmodified H3 ChIP. Our study utilizes the following datasets in addition to the data we generated: H3K4me1: GSM343141 H3K4me2: GSM343143 H3K4me3: GSM343144 H3K9me2: GSM310840 H2AZ: GSM307373
Project description:DNA replication initiates at defined sites called origins, which serve as binding sites for initiator proteins that recruit the replicative machinery. Origins differ in number and structure across the three domains of life1 and their properties determine the dynamics of chromosome replication. Bacteria and some archaea replicate from single origins, whilst most archaea and all eukaryotes replicate using multiple origins. Initiation mechanisms that rely on homologous recombination operate in some viruses. Here we show that such mechanisms also operate in archaea. We have used deep sequencing to study replication in Haloferax volcanii. Four chromosomal origins of differing activity were identified. Deletion of individual origins resulted in perturbed replication dynamics and reduced growth. However, a strain lacking all origins has no apparent defects and grows significantly faster than wild-type. Origin-less cells initiate replication at dispersed sites rather than at discrete origins and have an absolute requirement for the recombinase RadA, unlike strains lacking individual origins. Our results demonstrate that homologous recombination alone can efficiently initiate the replication of an entire cellular genome. This raises the question of what purpose replication origins serve and why they have evolved. Measurement of replication dynamics (marker frequency analysis; MFA) for Haloferax volcanii strains, including wild-type, the laboratory strain, individual and combinations of replication origin deletions.
Project description:Genomic integrity requires faithful chromosome duplication. Origins of replication are the genomic sites where DNA replication initiates in every cell cycle. There are multiple origins scattered throughout the eukaryotic genome whose genome-wide identification has been a hard challenge, especially in multicellular organisms. Thus, very little is known on the distinctive features of origins in terms of DNA sequence and chromatin context at a genomic scale. Here we have profiled origins in Arabidopsis thaliana by high-throughput sequencing of purified nascent DNA strands. We have identified 1543 replication origins, which were uniformly distributed across the Arabidopsis genome and enriched in binding signals of two replication initiation proteins, CDC6 and ORC1. We have also analyzed novel epigenome maps of various histone modifications and found links between origins and epigenetic signatures, which differ from or have not been reported for other eukaryotic systems. Arabidopsis origins tend to be embedded in G+C-rich regions within the 5’ half of genes, enriched in histone H2A.Z, H3K4me2/3 and acetylated H3 and H4, and depleted of H3K4me1 and H3K9me2. Our data establish the basis for the understanding of the epigenetic specification of origins of replication in Arabidopsis and have implications for the mechanisms of origin specification in other eukaryotes.
Project description:The chromatin at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how the chromatin composition controls the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we used site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae . Using mass spectrometry, we define the histone modification landscape and identify the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to the known origin interactors, we find novel origin-associated factors, such as the kinetochore-associated Ask1/DASH complex. Strikingly, we show that Ask1 regulates the replication timing control of specific origins in yeast. Thus, our unbiased approach identifies functionally-relevant proteomes at single-copy loci and would be widely applicable to provide an in-depth quantitative characterization of histone modification and protein interaction networks of chromatin at any genomic locus of interest.