Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:In this study, we generated whole genome bisulfite sequencing data 3 tissues in Holstein cattle. We analyzed the variations of DNA methylation among tissues.
Project description:In this study, we generated whole genome bisulfite sequencing data of 19 samples for 13 tissues in Holstein cattle. We analyzed the variations of DNA methylation among tissues. In this study, we generated whole genome bisulfite sequencing data of 6 samples for 5 tissues in Hereford cattle. We analyzed the variations of DNA methylation among tissues.
Project description:In this study, we generated whole genome bisulfite sequencing data of 2 samples for Bones in Holstein cattle. We analyzed the variations of DNA methylation among tissues compared to other tissues we generated before.
Project description:Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status (such as lactatino) are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function RNAseq profiling was conducted on non-lactating Holstein-Friesian heifers (n=16) and lactating Holstein-Friesian cows (n=17) at three stages of preovulatory follicle development: A) newly selected dominant follicle in the luteal phase (Selection); B) follicular phase before the LH surge (Differentiation) and C) pre-ovulatory phase after the LH surge (Luteinization). Based on a combination of RNA sequencing, ingenuity pathway analysis and Q-RT-PCR validation several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, were identified to be affected (downregulated) by the catabolic state. We propose that the adverse metabolic environment caused by lactation decreases preovulatory follicle function by affecting cholesterol transport into the mitochondria to initiate steroidogenesis. Granulosa and Theca samples from the dominant follicle were taken from cows and heifers at stages: selection, differentiation and luteinization.
Project description:The human metaphyseal chondrodysplasia type Schmid is an autosomal dominant disorder associated with mutations in COL10A1 gene that result in ER retention of misfolded alpha(X) collagen in hypertrophic chondrocytes (HCs). In a MCDS transgenic mouse model (13del), we have previously implicated HC response and adaptation to ER stress as the underlying molecular pathogenesis of the disease. We generate microarray data from chondrocytes in WT, 13del and 13del:Chop-/- mice to elucidate the etiological role of ER stress signaling in MCDS.
Project description:Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status (such as lactatino) are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function RNAseq profiling was conducted on non-lactating Holstein-Friesian heifers (n=16) and lactating Holstein-Friesian cows (n=17) at three stages of preovulatory follicle development: A) newly selected dominant follicle in the luteal phase (Selection); B) follicular phase before the LH surge (Differentiation) and C) pre-ovulatory phase after the LH surge (Luteinization). Based on a combination of RNA sequencing, ingenuity pathway analysis and Q-RT-PCR validation several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, were identified to be affected (downregulated) by the catabolic state. We propose that the adverse metabolic environment caused by lactation decreases preovulatory follicle function by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.