Project description:The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 Kb (51% GC) and 131 Kb (56% GC). The genome was used to construct a 385,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10 - 17% absence of genes. CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Comparative genomic hybridization highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Ten Cronobacter samples were analyzed, including total genomic DNA of six C. sakazakii strains, one C. malonaticus strain, one C. muytjensii strain, one C. dublinensis strain and one C. turicensis strain.
Project description:The genus Cronobacter (formerly called Enterobacter sakazakii) is composed of five species; C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, and C. dublinensis. The genus includes opportunistic human pathogens, and the first three species have been associated with neonatal infections. The most severe diseases are caused in neonates and include fatal necrotizing enterocolitis and meningitis. The genetic basis of the diversity within the genus is unknown, and few virulence traits have been identified. We report here the first sequence of a member of this genus, C. sakazakii strain BAA-894. The genome of Cronobacter sakazakii strain BAA-894 comprises a 4.4 Mb chromosome (57% GC content) and two plasmids; 31 Kb (51% GC) and 131 Kb (56% GC). The genome was used to construct a 385,000 probe oligonucleotide tiling DNA microarray covering the whole genome. Comparative genomic hybridization (CGH) was undertaken on five other C. sakazakii strains, and representatives of the four other Cronobacter species. Among 4,382 annotated genes inspected in this study, about 55% of genes were common to all C. sakazakii strains and 43% were common to all Cronobacter strains, with 10 - 17% absence of genes. CGH highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units. Comparative genomic hybridization highlighted 15 clusters of genes in C. sakazakii BAA-894 that were divergent or absent in more than half of the tested strains; six of these are of probable prophage origin. Putative virulence factors were identified in these prophage and in other variable regions. A number of genes unique to Cronobacter species associated with neonatal infections (C. sakazakii, C. malonaticus and C. turicensis) were identified. These included a copper and silver resistance system known to be linked to invasion of the blood-brain barrier by neonatal meningitic strains of Escherichia coli. In addition, genes encoding for multidrug efflux pumps and adhesins were identified that were unique to C. sakazakii strains from outbreaks in neonatal intensive care units.
Project description:Rapidly growing antibiotic resistance among gastrointestinal pathogens, and the ability of antibiotics to induce the virulence of these pathogens makes it increasingly difficult to rely on antibiotics to treat gastrointestinal infections. The probiotic E. coli strain Nissle 1917 (EcN) is the active component of the pharmaceutical preparation Mutaflor® and has been successfully used in the treatment of gastrointestinal disorders. Gut bacteriophages are dominant players in maintaining the microbial homeostasis in the gut, however, their interaction with incoming probiotic bacteria remains to be at conception. The presence of bacteriophages in the gut makes it inevitable for any probiotic bacteria to be phage resistant, in order to survive and successfully colonize the gut. This study addresses the phage resistance of EcN, specifically against lytic T4 phage infection. From various experiments we could show that i) EcN is resistant towards T4 phage infection, ii) EcN’s K5 polysaccharide capsule plays a crucial role in T4 phage resistance and iii) EcN’s lipopolysaccharide (LPS) inactivates T4 phages and notably, treatment with the antibiotic polymyxin B which neutralizes the LPS destroyed the phage inactivation ability of isolated LPS from EcN. Our results further indicate that N-acetylglucosamine at the distal end of O6 antigen in EcN’s LPS could be the interacting partner with T4 phages. From our findings, we have reported for the first time, the role of EcN’s K5 capsule and LPS in its defense against T4 phages. In addition, by inactivating the T4 phages, EcN also protects E. coli K-12 strains from phage infection in tri-culture experiments. The combination of the identified properties is not found in other tested commensal E. coli strains. Furthermore, our research highlights phage resistance as an additional safety feature of EcN, a clinically successful probiotic E. coli strain.
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators, and the host responce after adsorption of the phage and the ghost.
Project description:Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has trig-gered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of tran-scriptional and translational events occurring during the infection process. In this study, we ap-ply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying degradation of E. coli transcripts and preservation of the host proteome. Moreover, the correlation of the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, available to the scientific community to access gene expression patterns for E. coli and T4 genes.
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators.
Project description:Cyanobacteria are highly abundant in the oceans where they are constantly exposed to lytic viruses. Some viruses are restricted to a narrow host range while others infect a broad range of hosts. It is currently unknown whether broad-host range phages employ the same infection program, or regulate their program in a host-specific manner to accommodate for the different genetic makeup and defense systems of each host. Here we used a combination of microarray and RNA-seq analyses to investigate the interaction of three phylogentically distinct Synechococcus strains, WH7803, WH8102, and WH8109, with the broad-host range T4-like myovirus, Syn9, during infection. Strikingly, we found that the phage led a nearly identical expression program in the three hosts despite considerable differences in host gene content. On the other hand, host responses to infection involved mainly host-specific genes, suggesting variable attempts at defense against infection. A large number of responsive host genes were located in hypervariable genomic islands, substantiating genomic islands as a major axis of phage-bacteria interactions in cyanobacteria. Furthermore, transcriptome analyses and experimental determination of the complete phage promoter map revealed three temporally regulated modules and not two as previously thought for cyanophages. In contrast to T4, an extensive, previously unknown regulatory motif drives expression of early genes and host-like promoters drive middle-gene expression. These promoters are highly conserved among cyanophages and host-like middle promoters extend to other T4-like phages, indicating that the well-known mode of regulation in T4 is not the rule among the broad family of T4-like phages. We investigated the infection process and transcriptional program of the P-TIM40 cyanophage during infection of a Prochlorococcus NATL2A host. The results are discussed in conjunction with results obtained from the infection process for the Syn9 cyanophage in three different Synechococcus hosts: WH7803 (Dufresne et al. 2008), WH8102 (Palenik et al. 2003) and WH8109 (sequenced as part of this study).
Project description:Bacteriophages are highly abundant viruses of bacteria. The major role of phages in microbial ecology to shape bacterial communities and their emerging medical potential as antibacterial agents have triggered a rebirth of phage research. It is of particular interest to understand the molecular mechanisms by which phages gain control over their host. Omics technologies such as next-generation sequencing and protein-profiling technologies can provide novel insights into transcriptional and translational events occurring during the infection process. Thereby, the temporal organization of the transcriptome and proteome of the phage and their bacterial hosts can be monitored. In this study, we performed next-generation sequencing and proteomics to study the transcriptome and proteome of the T4 phage and its host during the infection in a time-resolved manner. Our data shows the temporally resolved appearance of bacteriophage T4 transcripts and proteins, confirming previously described subgrouping of T4 gene products into early, middle and late infection phases. We observe specific early transcripts giving rise to middle or late proteins indicating the existence of previously not reported post-transcriptional regulatory mechanisms controlling the translation of T4 mRNAs. Moreover, we investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying degradation of E. coli transcripts and preservation of the host proteome. This study provides the first comprehensive insights into the transcriptomic and proteomic takeover by the bacteriophage T4, exemplifying the power and value of high-throughput technologies to simultaneously characterize multiple gene expression events. Moreover, we created a user-friendly application available to the entire scientific community to access gene expression patterns for their host and phage genes of interest.