Project description:Fusarium fujikuroi is a biotechnologically important fungus due to its almost unique ability to produce gibberellic acids (GAs), a family of phytohormones. The fungus was described about 100 years ago as the causative agent of Bakanae (M-bM-^@M-^\foolish seedlingM-bM-^@M-^]) disease of rice. Apart from GAs, the fungus is known to produce pigments and mycotoxins, but the biosynthetic genes are known for only eight products. Here we present a high-quality genome sequence of the first member of the Gibberella fujikuroi species complex (GFC) that allowed de novo genome assembly with 12 scaffolds corresponding to the 12 chromosomes. In this work we focused on identification of all potential secondary metabolism-related gene clusters and their regulation in response to nitrogen availability by transcriptome, proteome, HPLC-FTMS and ChIP-seq analyses. We show that most of the cluster genes are regulated in a nitrogen-dependent manner, and that expression profiles fit to proteome and ChIP-seq data for some but not all clusters. Comparison with genomes of all available Fusarium species, including the recently sequenced F. mangiferae and F. circinatum, showed only a small number of common gene clusters and provides new insights into the divergence of secondary metabolism in the genus Fusarium. Phylogenetic analyses suggest that some gene clusters were acquired by horizontal gene transfer, while others were present in ancient Fusarim species and have evolved differently by gene duplications and losses. One polyketide synthase (PKS) and one non-ribosomal peptide synthetase (NRPS) gene cluster are unique for F. fujikuroi. Their products were identified by combining overexpression of cluster genes with HPLC-FTMS-based analyses. In planta expression studies suggest a specific role of the PKS19 product in rice infection. Our results indicate that comparative genomics together with the used genome-wide experimental approaches is a powerful tool to uncover new secondary metabolites and to understand their regulation at the transcriptional, translational and epigenetic levels. Examination of 3 different histone modifications, with 2 growth conditions for one of the modifications (Total of 4 samples)
Project description:Fusarium graminearum and F. verticillioides are devastating cereal pathogens with very different life history and ecological characteristics. F. graminearum is homothallic, and sexual spores are an important component of its life cycle, responsible for disease initiation. F. verticilloides is heterothallic, and produces only modest numbers of fruiting bodies, which are not a significant source of inoculum. To identify corresponding differences in the transcriptional program underlying fruiting body development in the two species, comparative expression was performed, analyzing six developmental stages. To accompany the transcriptional analysis, detailed morphological characterization of F. verticillioides development was performed and compared to a previous morphological analysis of F. graminearum. Morphological development was similar between the two species, except for the observation of possible trichogynes in F. verticillioides ascogonia, which have not been previously reported for any Fusarium species. Expression of over 9000 orthologous genes were measured for the two species. Functional assignments of highly expressed orthologous genes at each time-point revealed the majority of highly expressed genes fell into the M-bM-^@M-^XM-bM-^@M-^Xunclassified proteinsM-bM-^@M-^YM-bM-^@M-^Y category, reflecting the lack of characterization of genes for sexual development in both species. Simultaneous examination of morphological development and stage-specific gene expression suggests that degeneration of the paraphyses during sexual development is an apoptotic process. Expression of mating type genes in the two species differed, possibly reflecting the divergent roles they play in sexual development. Overall, the differences in gene expression reflect the greater role of fruiting bodies in the life cycle and ecology of F. graminearum versus F. verticillioides. mRNA were sampled and compared from six time points across sexual reproduction in two Fusarium species
Project description:Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) has been reported as a fruit- and root-rot pathogen of numerous field crops, although it is not known to cause significant losses on any crop. This cosmopolitan species has also been reported as an opportunistic human pathogen, from infected soybean cyst nematodes, deer dung, and soil, and it possesses a highly active CO2 fixation mechanism. To better understand the metabolic potential of this fungus, we sequenced the genome of one isolate of F. neocosmosporiellum and compared its gene content with previously published Fusarium genomes. The predicted gene numbers were similar to F. graminearum, but the F. neocosmosporiellum genome contained more carbohydrate metabolism-related and transmembrane transport genes, and it appears to have a greater ability to utilize resources in the environment as a cosmopolitan saprotroph. Transcriptome data during perithecium development was compared with that of the model plant pathogen F. graminearum. The F. neocosmosporiellum genome included both MAT1-1 and MAT1-2 idiomorphs, as in the homothallic F. graminearum, however MAT gene organization and their expression patterns during perithecium development differed in these species. We also found that many transmembrane transport genes were differentially expressed during perithecium development, which may account for the larger perithecia of F. neocosmosporiellum. Finally, comparative analysis of the secondary metabolite gene clusters identified several polyketide synthase genes that were induced during perithecium development. Deletion of a novel polyketide synthase gene in F. neocosmosporiellum resulted in a defective perithecium phenotype. In summary, comparative analysis of the transcriptional programs during perithecium development has provided novel insights into morphological and physiological diversification in F. neocosmosporiellum.
Project description:Fusarium fujikuroi is a biotechnologically important fungus due to its almost unique ability to produce gibberellic acids (GAs), a family of phytohormones. The fungus was described about 100 years ago as the causative agent of Bakanae (“foolish seedling”) disease of rice. Apart from GAs, the fungus is known to produce pigments and mycotoxins, but the biosynthetic genes are known for only eight products. Here we present a high-quality genome sequence of the first member of the Gibberella fujikuroi species complex (GFC) that allowed de novo genome assembly with 12 scaffolds corresponding to the 12 chromosomes. In this work we focused on identification of all potential secondary metabolism-related gene clusters and their regulation in response to nitrogen availability by transcriptome, proteome, HPLC-FTMS and ChIP-seq analyses. We show that most of the cluster genes are regulated in a nitrogen-dependent manner, and that expression profiles fit to proteome and ChIP-seq data for some but not all clusters. Comparison with genomes of all available Fusarium species, including the recently sequenced F. mangiferae and F. circinatum, showed only a small number of common gene clusters and provides new insights into the divergence of secondary metabolism in the genus Fusarium. Phylogenetic analyses suggest that some gene clusters were acquired by horizontal gene transfer, while others were present in ancient Fusarim species and have evolved differently by gene duplications and losses. One polyketide synthase (PKS) and one non-ribosomal peptide synthetase (NRPS) gene cluster are unique for F. fujikuroi. Their products were identified by combining overexpression of cluster genes with HPLC-FTMS-based analyses. In planta expression studies suggest a specific role of the PKS19 product in rice infection. Our results indicate that comparative genomics together with the used genome-wide experimental approaches is a powerful tool to uncover new secondary metabolites and to understand their regulation at the transcriptional, translational and epigenetic levels.
Project description:Fusarium spp. are fungal pathogens of humans and plants. Fusarium oxysporum and Fusarium solani are important species isolated from infections such as onychomycosis, fungal keratitis, invasive infections, and disseminated diseases. These pathologies have a very difficult therapeutic management and poor therapeutic responses, especially in patients with disseminated infection. Little information is available regarding the molecular mechanisms responsible for antifungal resistance in these fungi. methods: In this study, we performed a quantitative analysis of the transcriptional profile of F. oxysporum and F. solani, challenged with amphotericin B (AMB) and posaconazole (PSC) using RNA-seq. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the results results: Several genes related to mechanisms of antifungal resistance such as efflux pumps, ergosterol pathway synthesis, and responses to oxidative stress were found. Genes such as ERG11, ERG5, the Major Facilitator Superfamily (MFS), thioredoxin, and different dehydrogenase genes may explain the reduced susceptibility of Fusarium spp. against azoles and the possible mechanisms that may play an important role in induced resistance against polyenes. conclusions: Important differences in the levels of transcriptional expression were found between F. oxysporum and F. solani exposed to the two different antifungal treatments. Knowledge on the gene expression profiles and gene regulatory networks in Fusarium spp. during exposure to antifungal compounds, may help to identify possible molecular targets for the development of novel, better, and more specific therapeutic compounds. profile transcriptional of Fusarium spp changed to antifungal treatments in vitro
Project description:Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289 under gibberellin-inducing and -repressing conditions. Fusarium fujikuroi is a biotechnologically important fungus due to its almost unique ability to produce gibberellic acids (GAs), a family of phytohormones. The fungus was already described about 100 years ago as the causative agent of Bakanae (foolish seedling) disease of rice. Beside GAs, the fungus is known to produce some pigments and mycotoxins, but for only eight products the biosynthetic genes are known. Here we present a high-quality genome sequence of the first member of the Gibberella fujikuroi species complex (GFC), that allowed de novo genome assembly with 12 scaffolds corresponding to the 12 chromosomes. In this work, we focused on identification of all potential secondary metabolism-related gene clusters and their regulation in response to nitrogen availability by transcriptome, proteome, HPLC-FLPC and ChIP-seq analyses. We show that most of the cluster genes are regulated in a nitrogen-dependent manner, and that expression profiles fit to proteome and ChIP-seq data for some but not all clusters. Comparison with genomes of all available Fusarium species, including the recently sequenced F. mangiferae and F. circinatum, showed only a small number of common gene clusters and provides new insights into the divergence of secondary metabolism in the genus Fusarium. Phylogenetic analyses suggest that some gene clusters were acquired by horizontal gene transfer, while others were present in ancient Fusarim species and have evolved differently by gene duplications and losses. One PKS and one NRPS gene cluster are unique for F. fujikuroi. Their products were identified by combining overexpression of cluster genes with HPLC-FLPC -based product analyses. In planta, expression studies suggest a specific role of the PKS19 product in rice infection. Our results indicate that comparative genomics together with the used genome-wide experimental approaches is a powerful tool to uncover new secondary metabolites and to understand their regulation on the transcript, protein and epigenetic levels.
Project description:Fusarium graminearum and F. verticillioides are devastating cereal pathogens with very different life history and ecological characteristics. F. graminearum is homothallic, and sexual spores are an important component of its life cycle, responsible for disease initiation. F. verticilloides is heterothallic, and produces only modest numbers of fruiting bodies, which are not a significant source of inoculum. To identify corresponding differences in the transcriptional program underlying fruiting body development in the two species, comparative expression was performed, analyzing six developmental stages. To accompany the transcriptional analysis, detailed morphological characterization of F. verticillioides development was performed and compared to a previous morphological analysis of F. graminearum. Morphological development was similar between the two species, except for the observation of possible trichogynes in F. verticillioides ascogonia, which have not been previously reported for any Fusarium species. Expression of over 9000 orthologous genes were measured for the two species. Functional assignments of highly expressed orthologous genes at each time-point revealed the majority of highly expressed genes fell into the ‘‘unclassified proteins’’ category, reflecting the lack of characterization of genes for sexual development in both species. Simultaneous examination of morphological development and stage-specific gene expression suggests that degeneration of the paraphyses during sexual development is an apoptotic process. Expression of mating type genes in the two species differed, possibly reflecting the divergent roles they play in sexual development. Overall, the differences in gene expression reflect the greater role of fruiting bodies in the life cycle and ecology of F. graminearum versus F. verticillioides.