Project description:Low-GC Actinobacteria are among the most abundant and widespread microbes in freshwaters and have largely resisted all cultivation efforts. Consequently, their phages have remained totally unknown. In this work, we have used deep metagenomic sequencing to assemble eight complete genomes of the first tailed phages that infect freshwater Actinobacteria. Their genomes encode the actinobacterial-specific transcription factor whiB, frequently found in mycobacteriophages and also in phages infecting marine pelagic Actinobacteria. Its presence suggests a common and widespread strategy of modulation of host transcriptional machinery upon infection via this transcriptional switch. We present evidence that some whiB-carrying phages infect the acI lineage of Actinobacteria. At least one of them encodes the ADP-ribosylating component of the widespread bacterial AB toxins family (for example, clostridial toxin). We posit that the presence of this toxin reflects a 'trojan horse' strategy, providing protection at the population level to the abundant host microbes against eukaryotic predators.
Project description:Clinical case studies have reported that the combined use of specific lytic phage(s) and antibiotics reduces the severity of difficult-to-treat Pseudomonas aeruginosa infections in many patients. In vitro methods that attempt to reproduce specific pathophysiological conditions can provide a reliable assessment of the antibacterial effects of phages. Here, we measured bacterial killing kinetics and individual phage replication in different growth phases, including biofilms, elucidating factors influencing the efficacy of two phages against the laboratory strain P. aeruginosa PAO1. While two-phage combination treatment effectively eliminated P. aeruginosa in routine broth and in infected human lung cell cultures, the emergence of phage-resistant variants occurred under both conditions. Phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only with a combination of phages and meropenem. In contrast, surface-attached biofilm exhibited tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in antibacterial effect. Moreover, the phage with the shorter lysis time killed P. aeruginosa more rapidly, selecting a specific nucleotide polymorphism that likely conferred a competitive disadvantage and cross resistance to the second phage of the combination. These findings highlight biofilm developmental phase, inter-phage competition and phage resistance as factors limiting the in vitro efficacy of a phage combination. However, their precise impact on the outcome of phage therapy remains uncertain, necessitating validation through phage efficacy trials in order to establish clearer correlations between laboratory assessments and clinical results.
Project description:Genomic material isolated from purified phage YerA41 lysate was shown to contain RNA. YerA41 phage lysate was RNase treated to remove phage-external RNA and total RNA was then isolated from the phage preparate using Qiagen Rneasy mini kit. The isolated RNA was sequenced to elucidate its origin. The results suggested that the RNA originated from intact ribosomes of the host bacterium that contaminated the phage lysate.