Project description:The non-typhoidal Salmonella enterica serotype Heidelberg is a major foodborne pathogen primarily transmitted to humans through contaminated poultry products. Current control measures emphasize novel approaches to mitigate Salmonella Heidelberg colonization in poultry and the contamination of poultry products, thereby reducing its transmission to humans. This study highlight that commensal E. coli 47-1826 can potentially be used to control of S. Heidelberg 18-9079 in poultry
Project description:Salmonella being one of the major infectious diseases in poultry causes considerable economical losses in terms of mortality and morbidity especially in countries which lack effective vaccination programs. Salmonellosis is considered to be most important zoonotic disease which causes considerable foodborne illness that leads to enormous economic loses. To minimize such losses, enhancing disease resistance to different pathogens seems to be a promising strategy. The indigenous chicken, evolved through thousands of years of natural selection, are well adapted to the local climatic conditions with better resistance to diseases. In the present study we investigated liver and spleen transcriptome profile of indigenous (Kashmir faverolla) breed and commercial broiler poultry at day 5 post-inoculation with Salmonella typhimurium using RNA sequencing. The DEGs and pathways identified shall provide potential targets to enhance disease resistance in poultry through successful breeding programmes.
2022-02-01 | GSE168060 | GEO
Project description:mcr-mediated colistin resistance from farms in Lebanon
Project description:Differential expression was determined in Calu-3 cells between mock infected and infection with NS1trunc124: A/Vietnam/1203-CIP048_RG4/2004 (H5N1) or WT: A/Vietnam/1203/2004 (H5N1) at different times post infection.
Project description:A/Vietnam/1203-CIP048_RG3/2004 (H5N1) is a PB1-F2 deletion in wild type A/Vietnam/1203/2004 (H5N1). The goal of this study was to determine the host response (C57BL/6 mouse model) to the PB1-F2 mutation at a 10^4 PFU dose.