Project description:B1355-4-2 expresses five HMW subunits encoded by Glu-B1 (14, 15) and Glu D1 (5, 10) and transgene Glu-A1 (Ax1).Cadenza does not express Glu-A1 (Ax1. Line B1355-4-2(18) was generated by co-transformation with the ?clean? fragments of the HMW-GS 1Ax1 transgene (Halford, N.G. et al. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83, 373-378 (1992).)and the bar gene sequence. We compared the transcriptome of transgenic B1355-4-2(18) wheat line with their its background control-Cadenza bread wheat line. Transcriptomes comparisons were performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination ?dpg). Each of the transcriptome comparisons analaysis was performed using three biological replicates (i.e. per line/tissue/developmental stage selected). Hybridisations were performed in reverse dye labelling.
Project description:Transgenic cadenza lines express five HMW subunits encoded by:Glu-B1 (14, 15) and Glu D1 (5, 10) and transgene Glu-A1 (Ax1). Transcriptomes of the wheat line B1118-8-4(6) (produced by co transformation with two plasmids: one carried the transgene HMW-GS 1Ax1and other the bar and gus gene sequences) and wheat line B1355-4-2(18) (generated by co transformation with the clean fragments of the HMW-GS 1Ax1 transgene and the bar gene sequence) were compared. Transcriptomes analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination dpg). Each of the transcriptome comparisons was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling
Project description:B1118-8-4 expresses five HMW subunits encoded by Glu-B1 (14, 15) and Glu D1 (5, 10) and transgene Glu-A1 (Ax1).Cadenza does not express Glu-A1 (Ax1. B111-8-8-4 (6)transgenic wheat line was produced by co-transformation with two plasmids: one of the plasmids carring the transgene HMW-GS 1Ax1 (Halford, N.G. et al. Analysis of HMW glutenin subunits encoded bychromosome 1A of bread wheat (Triticum aestivum L.) and the other plasmid harbour the marker genes bar and gus indicates quantitative effects on grain quality. Theor Appl Genet 83, 373-378 (1992).) and the other the bar gus gene sequences. We compared the transcriptome of transgenic B1118-8 4(6) wheat line with its background control-Cadenza bread wheat line. Transcriptomes analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination dpg). Each of the transcriptome comparisons was performed using three biological replicates (i.e. per line/tissue/developmental stage selected). Hybridisations were performed in reverse dye labelling.
Project description:The high molecular weight (HMW) subunits of wheat glutenin are synthesised only in the starchy endosperm tissue of the developing wheat grain. We compared the expressed genomes of the transgenic wheat line B102,1-1 (Rooke et al. Transgene inheritance, segregation and expression in bread wheat. Euphytica 129, 301-309 (2003)). Both lines were shown to express the HMW-GS Ax1 gene (Halford, N.G. et al. Analysis of HMW glutenin subunits encoded bychromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83, 373-378 (1992).) to the expressed genome of conventionally bred wheat line L88-18 (Lawrence et al. Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal. Sci. 7,109-112 (1988)) which results in the same effects on traits. Transcriptomes comparison analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination dpg), respectively. Each of the transcriptome comparisons was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling.Exceptionally, biological replica 2 was only performed for B102,1-1 (green)/L88-18 (red) labelling and not swap
Project description:The high molecular weight (HMW) subunits of wheat glutenin are synthesised only in the starchy endosperm tissue of the developing wheat grain. The transcriptomes of the lines L88-18 and L88-31 (Lawrence, G.J., Macritchie, F. & Wrigley, C.W. Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal. Sci. 7,109-112 (1988)) coming from the same cross were compared. Transcriptomes analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination dpg). Each of the transcriptome comparisons was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling.
Project description:The high molecular weight (HMW) subunits of wheat glutenin are synthesised only in the starchy endosperm tissue of the developing wheat grain. We studied the effect of introducing transgenes on the global gene expression profiles of selected transgenic wheat lines, particularly during wheat seed development. For these particular set of experiments a direct comparison between the hexaploid bread transgenic line B102,1-1 (Rooke, L., Steele, S.H., Barcelo, P.,Shewry, P.R. & Lazzeri,P. Transgene inheritance, segregation and expression in bread wheat. Euphytica 129, 301-309 (2003)) and it background, non transformed L88-31 wheat line (Lawrence,G.J., Macritchie, F. & Wrigley, C.W. Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal. Sci. 7,109-112 (1988)) was performed. Transcriptome comparison analysis was performed in endosperm tissue (14 and 28 days post anthesis-dpa) and in leaf tissue (8 days post germination ?dpg). The transcriptome comparisons analysis was performed using three biological replicates (i.e. per line/tissue /developmental stage selected). Hybridisations were performed in reverse dye labelling.
Project description:Introgression of a high molecular weight glutenin subunit (HMW-GS) gene, 1Ay21*, into commercial wheat cultivars increased overall grain protein content and bread-making quality by unknown mechanisms. As well as increased abundance of 1Ay HMW-GS, 115 differentially expressed proteins (DEPs) were discovered between three cultivars and corresponding introgressed near-isogenic lines (NILs). Functional category analysis showed that the DEPs were predominantly other storage proteins, and proteins involved in protein synthesis, protein folding, protein degradation, stress response and grain development. Nearly half the genes encoding the DEPs showed strong co-expression patterns during grain development. Promoters of these genes are enriched in elements associated with transcription initiation and light response, indicating a potential connection between these cis-elements and grain protein accumulation. A model of how this HMW-GS enhances the abundance of machinery for protein synthesis and maturation during grain filling is proposed. This analysis not only provides insights into how introgression of the 1Ay21* improves grain protein content, but also directs selection of protein candidates for future wheat quality breeding programmes.
Project description:Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are type members of Tritimovirus and Poacevirus genera, respectively, in the family Potyviridae, and are transmitted by wheat curl mites. Co-infection of these two viruses causes synergistic interaction with increased virus accumulation and disease severity in wheat. In this study, we examined the effects of synergistic interaction between WSMV and TriMV on endogenous small (s) RNAs and virus-specific small interfering RNAs (vsiRNAs) in susceptible (Arapahoe) and temperature-sensitive resistant (Mace) wheat cultivars at 27ºC and 18ºC. Single- and double-infections in wheat caused a shift in the profile of endogenous sRNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Additionally, we report high-resolution vsiRNA maps of WSMV and TriMV in singly- and doubly-infected wheat cultivars Arapahoe and Mace at 18ºC and 27ºC. Massive amounts of 21 and 22 nt vsiRNA reads were accumulated in Arapahoe at both temperatures and in Mace at 27ºC but not at 18ºC. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27ºC, although some regions of genomic RNAs serve as hot-spots with an excessive number of vsiRNAs. The positions of vsiRNA peaks were conserved among wheat cultivars Arapahoe and Mace, suggesting that Dicer-like enzymes of susceptible and resistant wheat cultivars are similarly accessed the genomic RNAs of WSMV and TriMV. Additionally, several cold-spot regions were found in the genomes of TriMV and WSMV with no or a few vsiRNAs, indicating that certain regions of WSMV and TriMV genomes are not accessible to Dicer-like enzymes. The high-resolution map of endogenous and vsiRNAs from wheat cultivars synergistically infected with WSMV and TriMV at two temperature regimens form a foundation for understanding the virus-host interactions, effect of synergistic interactions on host defense mechanisms, and virus resistance mechanisms in wheat.
Project description:The goals of this study are to compare transcriptome profiling (RNA-seq) between two wheat cultivars with different antioxidant actvity and to clarify the differences of these two wheat cultivars.
Project description:We report the transcriptome profile of different cultivars of Fusarium graminearum-infected wheat grains, aiming to search for some different expression genes and pathways to reveal the difference between wheat cultivars.