Project description:We conducted a large-scale field experiment, imposing pre- and post-flowering drought stress on two genotypes of sorghum across a tightly-resolved time series, resulting in a data set of over 350 transcriptomes root and shoot tissue.
Project description:Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or “vegetable oils”) in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating “sweet” (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems. We initially tested several gene combinations for a “push-pull-protect" strategy. The top TAG-yielding constructs contained five oil transgenes for a sorghum Wrinkled1 transcription factor (“push”), a Cuphea viscosissima diacylglycerol acyltransferase (DGAT; "pull"), a modified sesame oleosin (“protect”) and two combinations of specialized Cuphea lysophosphatidic acid acyltransferases and medium-chain acyl-acyl carrier protein thioesterases. Though intended to generate oils with medium-chain fatty acids, engineered lines accumulated oleic acid-rich oil to amounts of up to 2.5% DW in leaves and 2.0% DW in stems in the greenhouse, 36-fold and 49-fold increases relative to wild-type plants, respectively. Under field conditions, the top-performing event accumulated TAG to amount of up to 5.5% DW in leaves and 3.5% DW in stems, 78-fold and 58-fold increases, respectively, relative to wild-type TX430. Transcriptomic and fluxomic analyses revealed potential bottlenecks for increased TAG accumulation. Overall, our studies highlight the utility of a lab-to-field pipeline coupled with systems biology studies to deliver high vegetative oil sorghum for SAF and renewable diesel production.
Project description:Microplastics (MPs) as widespread contamination pose high risk for aquatic organisms.Intestinal microbiotahas have high interaction with immune system of host body. In this study, intestinal microbiota of zebrafish after Polystyrene (PS-MPs) exposure were characterized by 16S rDNA amplicon sequencing. We found that 100nm and 200μm PS-MPs exposure significantly increased diversity of intestinal microbiota and all the three sizes of PS-MPs increased abundance of pathogenic bacteria.
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp). 15 samples examined in total from important plume zones of the aquifer sampled in Feb. 2006, Sep. 2008 and Jun. 2009 (5 every year of sampling).