Project description:JC polyomavirus (JCPyV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a devastating demyelinating disease of the central nervous system that results in the widespread formation of lesions across the brain parenchyma. The virus is opportunistic and remains in a benign state in the kidneys and lymphoid organs of more than half of the global human adult population. However, in rare cases of severe or selective immune suppression, JCPyV can establish a lytic infection of glial cells in the brain. While PML has traditionally been characterized as a lytic infection of oligodendrocytes, more recent findings suggest an important role for astrocytes during the initial stages of disease. Because of the exceptional species and tissue specificity of the virus, appropriate models of JCPyV infection in the brain are lacking, thus hampering progress towards the development of novel antiviral strategies and biomarkers of disease activity. Here, using iPSC-derived astrocytes infected with JCPyV and analyzed by LC-MS/MS, we show that the virus strongly influences the cell biology, inducing an unique proteomic signature that sharply contrasts with mock-infected cells.
Project description:JC polyomavirus (JCPyV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a devastating demyelinating disease of the central nervous system that results in the widespread formation of lesions across the brain parenchyma. The virus is opportunistic and remains in a benign state in the kidneys and lymphoid organs of more than half of the global human adult population. However, in rare cases of severe or selective immune suppression, JCPyV can establish a lytic infection of glial cells in the brain. While PML has traditionally been characterized as a lytic infection of oligodendrocytes, more recent findings suggest an important role for astrocytes during the initial stages of disease. Because of the exceptional species and tissue specificity of the virus, appropriate models of JCPyV infection in the brain are lacking, thus hampering progress towards the development of novel antiviral strategies and biomarkers of disease activity. Towards the aim of biomarker development extracellular vesicles (EVs) were isolated from JCPyV-infected and mock-infected human iPSC-derived astrocytes and analyzed by LC-MS/MS. As a inflammatory control, EVs were also isolated from cytokine-stimulated iPSC-derived astrocytes. We demonstrate that the proteomic signature associated with EVs from JCPyV-infected astrocytes reflect what was observed on a cellular level for infected astrocytes while being strikingly different from that of EVs generated under inflammatory conditions.
Project description:JC polyomavirus (JCPyV) established a persistent infection, but BK polyomavirus (BKPyV) killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We found that interferon-stimulated genes (ISGs) were only activated in the JCPyV and not in the BKPyV-infected cells.
Project description:JC polyomavirus whole genome sequencing at the single molecule level reveals emerging viral populations in Progressive Multifocal Leucoencephalopathy
Project description:JC virus (JCV) is a ubiquitous human polyomavirus that causes the demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). JCV replicates in limited cell types in culture, predominantly in human glial cells. Thus, productive JCV infection is an indicator of the host cell transcription environment. Following introduction of a replication defective SV40 mutant that expressed large T protein into a heterogeneous culture of human fetal brain cells, multiple phenotypes became immortalized (SVG cells). A subset of SVG cells could support JCV replication. This mixed culture was called SVG cells. In the current study, clonal cell lines were selected from the original SVG cell culture. The SVG-5F4 clone showed low levels of viral growth. The SVG-10B1 clone was highly permissive for JCV DNA replication and gene expression. Microarray analysis revealed that viral infection did not significantly change gene expression in these cells. More resistant 5F4 cells expressed high levels of transcription factors known to inhibit JCV transcription. Interestingly, 5F4 cells highly expressed RNA of markers of Bergman or radial glia and 10B1 cells had high expression of markers of immature glial cells and activation of transcription regulators important for stem/progenitor cell self-renewal. These SVG-derived clonal cell lines provide a biologically relevant model to investigate cell type differences in JCV host range and pathogenesis, as well as neural development. 13 Human samples: 3 SVG 10B1 clones 14 days post mock-infection, 3 SVG 10B1 clones 14 days post JCV Mad-4 strain infection, 3 SVG 5F4 clones 14 days post mock-infection, 4 SVG 5F4 clones 14 days post JCV Mad-4 strain infection.
Project description:JC virus (JCV) is a ubiquitous human polyomavirus that causes the demyelinating disease Progressive Multifocal Leukoencephalopathy (PML). JCV replicates in limited cell types in culture, predominantly in human glial cells. Thus, productive JCV infection is an indicator of the host cell transcription environment. Following introduction of a replication defective SV40 mutant that expressed large T protein into a heterogeneous culture of human fetal brain cells, multiple phenotypes became immortalized (SVG cells). A subset of SVG cells could support JCV replication. This mixed culture was called SVG cells. In the current study, clonal cell lines were selected from the original SVG cell culture. The SVG-5F4 clone showed low levels of viral growth. The SVG-10B1 clone was highly permissive for JCV DNA replication and gene expression. Microarray analysis revealed that viral infection did not significantly change gene expression in these cells. More resistant 5F4 cells expressed high levels of transcription factors known to inhibit JCV transcription. Interestingly, 5F4 cells highly expressed RNA of markers of Bergman or radial glia and 10B1 cells had high expression of markers of immature glial cells and activation of transcription regulators important for stem/progenitor cell self-renewal. These SVG-derived clonal cell lines provide a biologically relevant model to investigate cell type differences in JCV host range and pathogenesis, as well as neural development.