Project description:Three-day metatranscriptome of surface gravel plain soils from the Central Namib Desert. Samples were collected at four times (6:00, 12:00, 18:00 and 24:00h) on each day (n=12). rRNA-depleted RNA was used to construct stranded libraries with the ScriptSeq v2 complete kit (Epicentre) adding unique barcodes in TruSeq adapters (ScriptSeq Index PCR primers, set 1, Epicentre). Libraries were single-end sequenced in a NextSeq 500 v2 sequencer, with read length of 75bp.
Project description:In the recent years, RNA silencing has been studied extensively to be a conserved regulatory process in plants. In the antiviral silencing, the intermediate double-stranded RNA form during the replication of RNA viruses were recognized and processed into abundant of overlapping viral siRNA (viRNAs). Accordingly, the cloned viRNAs could be conversely assembled into some contigs of viruses, which is recently exploited for identifying new viruses and their genome sequences.To obtain rapidly the complete genome sequence of BYSMV, we carried out deep sequencing of small RNAs from healthy and BYSMV infected wheat, respectively. Thirteen contigs were assembled from the overlapping viRNAs only present in the infected wheat but not in the healthy wheat. The results of BLAST showed that ten contigs shared about 96% identity with the reported L gene of BYSMV isolate Zanjan-1.
2015-09-15 | GSE61565 | GEO
Project description:Assembled contigs of 760 MetaHIT metagenomes
Project description:Small RNA libraries were constructed from total RNA from Jasminum sambac plants exhibiting virus-like symptoms. After sequencing, small RNAs were assembled into contigs with MetaVelvet and assembled contigs were aligned against the NR database of NCBI using BLASTx. Top hits that reported a virus as subject were considered putative viral sequences. Based on such alignments, the whole genome of a virus, we tentatively name Jasmine Virus H was recovered and cloned. Two more small RNA libraries were made in a confirmatory experiment. One from Jasminum sambac and another one from Nicotiana benthamiana plants infected with the newly-cloned virus. The small RNA libraries were aligned against the full-length sequence of Jasmine Virus H to determine the spacial distribution of virus-derived small RNAs along the virus genome.
Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
Project description:In the recent years, RNA silencing has been studied extensively to be a conserved regulatory process in plants. In the antiviral silencing, the intermediate double-stranded RNA form during the replication of RNA viruses were recognized and processed into abundant of overlapping viral siRNA (viRNAs). Accordingly, the cloned viRNAs could be conversely assembled into some contigs of viruses, which is recently exploited for identifying new viruses and their genome sequences.To obtain rapidly the complete genome sequence of BYSMV, we carried out deep sequencing of small RNAs from healthy and BYSMV infected wheat, respectively. Thirteen contigs were assembled from the overlapping viRNAs only present in the infected wheat but not in the healthy wheat. The results of BLAST showed that ten contigs shared about 96% identity with the reported L gene of BYSMV isolate Zanjan-1. Viral assembly from the BYSMV infected wheat plants to obtain the full lengh genome and characterise the viral siRNAs