Project description:Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165(T). The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 10(6) M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.
Project description:Ruminiclostridium thermocellum DSM 1313 strain adhE*(EA) expression was studied along with ∆hydG and ∆hydG∆ech mutants strains deposited under GSE54082. All strains have been described in a study entitled Elimination of hydrogenase post-translational modification blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biswas, et .al. Biotechnology for Biofuels 2015 8:20 Ruminiclostridium (Clostridium) thermocellum is a leading candidate organism for implementing a consolidated bioprocessing (CBP) strategy for biofuel production due to its native ability to rapidly consume cellulose and its existing ethanol production pathway. C. thermocellum converts cellulose and cellobiose to lactate, formate, acetate, H2, ethanol, amino acids, and other products. Elimination of the pathways leading to products such as H2 could redirect carbon flux towards ethanol production. Rather than delete each hydrogenase individually, we targeted a hydrogenase maturase gene (hydG), which is involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes by assembling the active site. This functionally inactivated all three Fe-Fe hydrogenases simultaneously, as they were unable to make active enzymes. In the ∆hydG mutant, the [NiFe] hydrogenase-encoding ech was also deleted to obtain a mutant that functionally lacks all hydrogenase. The ethanol yield increased nearly 2-fold in ∆hydG∆ech compared to wild type, and H2 production was below the detection limit. Interestingly, ∆hydG and ∆hydG∆ech exhibited improved growth in the presence of acetate in the medium. Transcriptomic and proteomic analysis reveal that genes related to sulfate transport and metabolism were up-regulated in the presence of added acetate in ∆hydG, resulting in altered sulfur metabolism. Further genomic analysis of this strain revealed a mutation in the bi-functional alcohol/aldehyde dehydrogenase adhE gene, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities, whereas the wild type strain can only utilize NADH. This is the exact same adhE mutation found in ethanol-tolerant C. thermocellum strain E50C, but ∆hydG∆ech is not more ethanol tolerant than the wild type. Targeting protein post-translational modification is a promising new approach to target multiple enzymes simultaneously for metabolic engineering. This GEO study pertains to expression profiles generated for C. thermocellum DSM 1313 strain adhE*(EA)
Project description:We measured steady-state transcript levels in 1) wild-type E. litoralis DSM 8509, 2) a nepR-ecfG deletion strain (ΔnepR-ecfG), 3) a phyR deletion strain (ΔphyR), 4) a lovK-lovR deletion strain (ΔlovKR), and 5) a gsrK-gsrP deletion strain (ΔgsrKΔgsrP) cultivated in constant white light or in constant dark conditions.