Project description:Secreted parasite factors from Babesia canis during acute infection were investigated using a LC-MS/MS assay which led to the discovery of potential pathogenicity factors. Combined data from genomics, transcriptomics and proteomics provide a first predicted and partially validated set of potential virulence factors exported during fatal infections.
Project description:Canine babesiosis, a tick-borne disease, is characterized by protozoan parasites invading red blood cells. It is rapidly expanding in many European countries. Examining extracellular vesicles (EVs) and their protein cargo has the potential to offer crucial insights into the response to Babesia canis infection, presenting opportunities for advancements in veterinary diagnostic and therapeutic strategies. In the present study, we have a) isolated small EVs (< 200 nm) from the serum of 15 healthy dogs and 15 dogs naturally infected with B. canis using size-exclusion chromatography (fraction 2 and 3 per each sample), (2) characterized isolated EVs by nanoparticle tracking analysis, transmission electron microscopy and Western blot (3) analysed the protein cargo of isolated EVs by mass spectrometry. We hypothesized that there will be a difference in EV characteristics (size, concentration, EV marker proteins) and profiles of luminal proteins between the two experimental groups. Our aim was to characterize proteins that can offer valuable insights into B. canis infection in dogs, thereby unravelling the complex mechanisms of B. canis infection.
Project description:To understand the effect of Babesia infection on Rhipicephalus microplus hemocyte gene expression, we performed high throughput RNA-sequencing using samples collected from Rhipicephalus microplus uninfected tick hemolymph and infected with either Babesia bigemina or Babesia bovis. We evaluated gene expression differences that may be attributed to tick immune defense to babesial infection.
Project description:Bacteria belonging to phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. To date, only two Gemmatimonadetes strains have been characterized. Here we report the complete genome sequence and methylation pattern of Gemmatirosa kalamazoonensis KBS708 (ATCC BAA-2150; NCCB 100411), the first characterized Gemmatimondetes strain isolated from soil. Examination of the methylome of Gemmatirosa kalamazoonenis KBS708 using kinetic data from single-molecule, real-time (SMRT) sequencing on the PacBio RS
Project description:To understand Babesia gene regulation during tick and mammalian host infection, we performed high throughput RNA-sequencing using samples collected from calves and Rhipicephalus microplus ticks infected with Babesia bigemina. We evaluated gene expression differences between B. bigemina kinetes and blood-stage parasites
Project description:Concurrent readout of sequence and base modifications from long unamplified DNA templates by PacBio single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90–99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000–50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.
Project description:Concurrent readout of sequence and base modifications from long unamplified DNA templates by PacBio single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90–99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000–50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.
Project description:Concurrent readout of sequence and base modifications from long unamplified DNA templates by PacBio single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90–99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000–50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.
Project description:Concurrent readout of sequence and base modifications from long unamplified DNA templates by PacBio single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90–99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility. SMRT-Tag of 40 ng or more human DNA (approximately 7,000 cell equivalents) yielded data comparable to gold standard whole-genome and bisulfite sequencing. SAMOSA-Tag of 30,000–50,000 nuclei resolved single-fiber chromatin structure, CTCF binding and DNA methylation in patient-derived prostate cancer xenografts and uncovered metastasis-associated global epigenome disorganization. Tagmentation thus promises to enable sensitive, scalable and multimodal single-molecule genomics for diverse basic and clinical applications.