Project description:In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity.
Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:Fringes are glycosyltransferases that transfer a GlcNAc to O-fucose residues on Epidermal Growth Factor-like (EGF) repeats. Three Fringes exist in mammals: LUNATIC FRINGE (LFNG), MANIC FRINGE (MFNG) and RADICAL FRINGE (RFNG). Fringe modification of O-fucose on EGF repeats in the NOTCH1 (N1) extracellular domain modulates the activation of N1 signaling. Not all O-fucose residues of N1 are modified by all Fringes; some are modified by one or two Fringes and others not modified at all. The distinct effects on N1 activity depend on which Fringe is expressed in a cell. However, little data is available on the effect that more than one Fringe has on the modification of O-fucose residues and the resulting downstream consequence on Notch activation. Using mass spectral glycoproteomic site mapping and cell-based N1 signaling assays, we compared the effect of co-expression of N1 with one or more Fringes on modification of O-fucose and activation of N1 in three cell lines. Individual expression of each Fringe with N1 in the three cell lines revealed differences in modulation of the Notch pathway dependent on the presence of endogenous Fringes. Despite these cell-based differences, co-expression of several Fringes with N1 demonstrated a dominant effect of LFNG over MFNG or RFNG. MFNG and RFNG appeared to be co-dominant but strongly dependent on the ligands used to activate N1 and on the endogenous expression of Fringes. These results show a hierarchy of Fringe activity and indicate that the effect of MFNG and/or RFNG could be small in the presence of LFNG.
Project description:Transcriptomic changes and estrogen and progesterone receptor binding in multiple ER+/PR+ models (eight ER+/PR+ patient tumors, various T47Ds, ZR75) and multiple ER+/PR-negative models (four ER+/PR- patient tuumors, PR-deficient T47D and MCF7 cells) treated with various hormone combinations. Results: In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. Importantly, when both hormones are present, progestin modulates estrogen action such that responsive transcriptomes, cellular processes and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Conclusions: Genomic Agonism and Phenotypic Antagonism between Estrogen and Progesterone Receptors in Breast Cancer. Individual and concerted actions of ER and PR highlight the prognostic and therapeutic value of PR in ER+/PR+ breast cancers.