Project description:Testing of response of hetertrophic partners (Halomonas sp. HL-48 and Marinobacter sp. HL-58) to both axenic and co-culture growth using both glucose and xylose
Project description:We have used a combination of constitutive and inducible MLL-AF4 and AF4-MLL fusion genes to investigate the power of theses fusion proteins. All transgenes were stably or transiently transfected. Here, we compared 48 induction of MLL-AF4 or AF4-MLL (day 3) and looked for persistance at days 28. This was compared to the situation with constitutive MLL-AF4 with 48 inductionn of AF4-MLL at day 3 and day 28.
Project description:Gene expression of side population (SP) and major population (MP) of myeloma cell lines (RPMI-8226 and KMS-11) cultured under normoxic or hypoxic conditions for 48 h.
Project description:Background: Possible outcomes of acne lesions are atrophic scars which may cause serious physical and psychological distress. Current treatments of post-acne scarring remain difficult and often require invasive procedures. Pathophysiological studies on acne scaring investigated only the first week of papule life. Objectives: Study the pathophysiology of atrophic acne scar formation to identify molecular and cellular pathways that can lead to new therapies for the prevention of acne scarring. Methods: Large-scale gene expression profiling of uninvolved acne skin and acne papules of 48 hours and 3 weeks of age, respectively, of both, scar-prone (SP) and non-scar-prone (NSP) patients was performed. Immunohistochemistry techniques were applied to confirm transcriptomics results on the protein and cellular level. Results: Gene expression and immunohistochemistry analyses showed a very similar immune response in 48 hours-old papules in SP and NSP populations characterized by elevated numbers of T cells, neutrophils and macrophages. However, only in SP patients the immune response persisted in 3 week-old papules, and was characterized by an important infiltrate of B cells. Transient down-modulation of genes related to lipid metabolism was observed in 48 hours-old papules in NSP patients, followed by normalization of gene expression levels after 3 weeks. In contrast, in SP patients a drastic reduction of lipid metabolizing enzymes was observed in 3 week-old papules, suggesting irreversible modifications. The affected lipid metabolism genes were found preferentially expressed in human sebaceous glands, pointing to a destruction of sebaceous gland structures after 3 weeks of inflammatory remodelling in SP acne patients.