Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:Streptococcus gallolyticus subsp. gallolyticus is a commensal of the human gastrointestinal tract and a pathogen of infective endocarditis and other biofilm-associated infections with exposed collagen. Therefore, this study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. It has been observed that lysozyme triggers biofilm formation divergently in the analyzed S. gallolyticus subsp. gallolyticus strains. The transcriptome analysis was performed for two strains which form more biofilm in the presence of lysozyme. Lysozyme leads to higher expression of genes of transcription and translation, of the dlt operon (cell wall modification), of hydrogen peroxide resistance proteins and of two immunity proteins which could be involved in biofilm formation. Furthermore, the adhesion ability of 73 different S. gallolyticus subsp. gallolyticus strains to collagen type I and IV was analyzed. High adhesion ability was observed for the strain UCN 34, whereas the strain DSM 16831 adhered only marginally to collagen. The full genome microarray analysis revealed strain-dependent gene expression due to adhesion. The expression of genes of a transposon and a phage region in strain DSM 16831 were increased, which corresponds to lateral gene transfer. Adherence to collagen leads to a change in the expression of genes of nutrients uptake in the strain UCN 34.
Project description:This project is a proteomic comparison of Hyphomicrobium sp. MC8b grown with dichloromethane or with methanol. The datasets were obtained using the annotated genome of Hyphomicrobium sp. MC8b.
Project description:This project is a proteomic comparison of Hyphomicrobium sp. MC8b grown with dichloromethane or with methanol. The datasets were obtained using a pan-proteomic database built by merging the predicted proteomes from the annotated genomes of 13 Hyphomicrobium strains.
Project description:Investigation of whole genome gene expression level changes in Lactococcus lactis KCTC 3769T,L. raffinolactis DSM 20443T, L. plantarum DSM 20686T, L. fujiensis JSM 16395T, L. garvieae KCTC 3772T, L. piscium DSM 6634T and L. chungangensis CAU 28T . This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.
Project description:Purpose of experiment :To 1) evaluate for the presence of pulmonary ionocytes, 2) investigate the role of the CFTR in airway epithelium. Description of samples: 1564 (CF-repaired), 1565 (CF DF508homozygous) iPSC-airway epithelium through basal cell intermediate. iPSC-D15CD47/CD26sort- NGFR sort x 2
Project description:Interventions: Level1 First dose Cetuximab: 400 mg/m2 div day1 U3-1565: 24 mg/kg div day1 From second dose on Cetuximab: 250 mg/m2 div. day1,8 U3-1565: 16 mg/kg div day1 q2w Level0 First dose Cetuximab: 400 mg/m2 div day1 U3-1565: 16 mg/kg div day1 From second dose on Cetuximab: 250 mg/m2 div day1,8 U3-1565: 12 mg/kg div day1,8 q2w
Primary outcome(s): Proportion of DLT(Dose limiting toxicity)
Study Design: Single arm Non-randomized