Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control.
Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control. A 4-plex 3 chip study using total RNA recovered from three separate wild-type cultures each of N. europaea grown in Fe-replete media and Fe-limited media and three seperate cultures each of N. europaea pFur::Kan mutant strain grown in Fe-replete and Fe-limited media. Each chip measures the expression level of 2368 genes from Nitrosomonas europaea (ATCC19718) with 4 X 72,000 60-mer 14 probe pairs per gene, with two-fold technical redundancy.
Project description:we studied the functional composition of a packed-bed nitrifying bioreactor inoculated with a co-culture of Nitrosomonas europaea (ATCC 25978) and Nitrobacter winogradskyi (ATCC 25391) after 840 days of operation.
Project description:To further explore the biotoxicity mechanisms of CeO2 nanoparticles (NPs) and the recovery strategies of the according impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were evealed.
Project description:To further explore the biotoxicity mechanisms of zinc oxide nanoparticles (ZnO NPs) and the recovery strategies of the accordingly impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia-oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were revealed.
Project description:To further explore the biotoxicity mechanisms of TiO2 nanoparticles (NPs) and the recovery potentials of the impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the whole-genome microarray analysis was applied to retrieve the induced transcriptional responses during the long-term exposure, after the toxicity effects and the recovery potentials were assessed at both physiological and metabolic levels.
Project description:To further explore and differentiate the biotoxicity mechanisms of individual nanoparticles (NPs) and NP mixture on Nitrosomonas europaea (N. europaea, ATCC 19718) at genetic level, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the induced whole-genome expressions were analyzed with the high throughput Microarray technique, after the dose-dependent changes of N. europaea’s physiological, metabolic and AMO enzyme activities in single and dual component NP systems was evaluated.