Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
Project description:The rate, timing, and mode of species dispersal is recognized as a key driver of the structure and function of communities of macroorganisms, and may be one ecological process that determines the diversity of microbiomes. Many previous studies have quantified the modes and mechanisms of bacterial motility using monocultures of a few model bacterial species. But most microbes live in multispecies microbial communities, where direct interactions between microbes may inhibit or facilitate dispersal through a number of physical (e.g., hydrodynamic) and biological (e.g., chemotaxis) mechanisms, which remain largely unexplored. Using cheese rinds as a model microbiome, we demonstrate that physical networks created by filamentous fungi can impact the extent of small-scale bacterial dispersal and can shape the composition of microbiomes. From the cheese rind of Saint Nectaire, we serendipitously observed the bacterium Serratia proteamaculans actively spreads on networks formed by the fungus Mucor. By experimentally recreating these pairwise interactions in the lab, we show that Serratia spreads on actively growing and previously established fungal networks. The extent of symbiotic dispersal is dependent on the fungal network: diffuse and fast-growing Mucor networks provide the greatest dispersal facilitation of the Serratia species, while dense and slow-growing Penicillium networks provide limited dispersal facilitation. Fungal-mediated dispersal occurs in closely related Serratia species isolated from other environments, suggesting that this bacterial-fungal interaction is widespread in nature. Both RNA-seq and transposon mutagenesis point to specific molecular mechanisms that play key roles in this bacterial-fungal interaction, including chitin utilization and flagellin biosynthesis. By manipulating the presence and type of fungal networks in multispecies communities, we provide the first evidence that fungal networks shape the composition of bacterial communities, with Mucor networks shifting experimental bacterial communities to complete dominance by motile Proteobacteria. Collectively, our work demonstrates that these strong biophysical interactions between bacterial and fungi can have community-level consequences and may be operating in many other microbiomes.
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:<p>Drought stress negatively impacts microbial activity, but the magnitude of stress responses are likely dependent on a diversity of below ground interactions. Populus trichocarpa individuals and no plant bulk soils were exposed to extended drought (~0.03% gravimetric water content (GWC) after 12d), re-wet, and a 12-d 'recovery' period to determine the effects of plant presence in mediating soil microbiome stability to water stress. Plant metabolomic analyses indicated that drought exposure increased host investment in C and N metabolic pathways (amino acids, fatty-acids, phenolic glycosides) regardless of recovery. Several metabolites positively correlated with root-associated microbial alpha diversity, but not those of soil communities. Soil bacterial community composition shifted with P. trichocarpa presence and with drought relative to irrigated controls, whereas soil fungal composition only shifted with plant presence. However, root fungal communities strongly shifted with drought, whereas root bacterial communities changed to a lesser degree. The proportion of bacterial water-stress opportunistic OTUs (enriched counts in drought) were high (~11%) at the end of drying phases, and maintained after re-wet, and recovery phases in bulk soils, but declined over time in soils with plants present. For root fungi opportunistic OTUs were high at the end of recovery in drought treatments (~17% abundance), although relatively not responsive in soils, particularly planted soils (< 0.5% abundance for sensitive or opportunistic). These data indicate that plants modulate soil and root associated microbial drought responses via tight plant-microbe linkages during extreme drought scenarios, but trajectories after extreme drought vary with plant habitat and microbial functional groups.</p>
Project description:The daily cycle of night and day affects the behaviour and physiology of almost all living things. At the molecular level, many genes show daily changes in expression levels. To determine whether changes in transcript abundance occur in wood forming tissues of Eucalyptus trees we used a cDNA microarray to examine gene expression levels at roughly four hour intervals throughout the day. Experiments were performed using RNA extracted from two biological replicates - GU (Eucalyptus grandis x E. urophylla) and GC (Eucalyptus grandis x camaldulensis) trees. A loop design was used, linking six time points. A dye swap was incorporated to eliminate dye bias.