Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We used the mummichog (Fundulus heteroclitus) array we developed to test whether our arrays could be used to monitor the efficacy of remediation at an estuarine Superfund site. Shipyard Creek is a chromium-contaminated Superfund site in Charleston, SC undergoing remediation, therefore it provides a unique opportunity to study the efficacy of arrays as a molecular biomarker in of toxicant effects in mummichogs. Mummichogs were captured in Shipyard Creek in Charleston, SC prior to remediation (2000), after remediation began (2003), and as remediation further progressed (2005). Simultaneously, mummichogs were collected from a reference site at the Winyah-Bay National Estuarine Research Reserve (NERR). The hepatic gene expression pattern of fish captured at Shipyard Creek showed wide differences from the fish captured at NERR in 2000. As remediation progressed the gene expression pattern of fish captured at Shipyard Creek became increasingly similar to fish captured at NERR, and the number of genes differently expressed dropped from 22 to 4. The magnitude of differential gene expression of the individual genes also decreased during remediation. The recovering gene expression profile is associated with lower chromium bioavailability, demonstrated through significantly decreased body burden and sediment concentrations. For example, sediment concentrations at Shipyard Creek were 80-fold greater than NERR in 2000, 51-fold greater in 2003, and only 8-fold greater in 2005. However, hydraulic dredging in 2005 stirred up the sediments and increased body burden of chromium even though chromium sediment concentrations continued to drop. Therefore, the number of differentially expressed genes increased to 9. Overall, the data supports our hypothesis that arrays can be used to monitor site mitigation, as the number of genes differentially expressed mimics the body burden and also indicates when on-site remediation is increasing bioavailability. Keywords: Field site
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:We investigated a contaminant-degrading microbial community by sequencing total RNA (without rRNA depletion) from microcosms containing sediment from a hypoxic contaminated aquifer fed with isotopically labeled toluene.
2018-09-07 | GSE119644 | GEO
Project description:Response of microbial community to sediment remediation
Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Although metabolic engineering approaches have benefited the development of industrial strains enormously, they are often only partially successful, such that additional rounds of modification are generally needed to ensure microbial strains meet all the requirements of a particular process. Systems biology approaches can aid in yeast design providing an integrated view of yeast physiology and helping to identify targets for modification. Among other phenotypes, the generation of wine yeasts that are able to produce wines with reduced ethanol concentrations has been the focus of extensive research. However, while producing low-alcohol wines, these strains generally produce off-flavour metabolites as metabolic by-products. We therefore used transcriptomics, proteomics and metabolomics to investigate the physiological changes of such an engineered low-ethanol wine strain during wine fermentation to determine possible strategies for by-product remediation. Integration of ‘omics data led to the identification of several processes, including reactions related to the pyruvate node and redox homeostasis, as significantly different compared to a non-engineered parent strain, with acetaldehyde and 2,4,5-trimethyl 1,3-dioxolane identified as the main off-flavour metabolites. Gene remediation strategies were applied to decrease the formation of these metabolites, while maintaining the ‘low-alcohol’ phenotype.